Homers are scaffolding proteins that bind G protein–coupled receptors (GPCRs), inositol 1,4,5-triphosphate (IP3) receptors (IP3Rs), ryanodine receptors, and TRP channels. However, their role in Ca2+ signaling in vivo is not known. Characterization of Ca2+ signaling in pancreatic acinar cells from Homer2−/− and Homer3−/− mice showed that Homer 3 has no discernible role in Ca2+ signaling in these cells. In contrast, we found that Homer 2 tunes intensity of Ca2+ signaling by GPCRs to regulate the frequency of [Ca2+]i oscillations. Thus, deletion of Homer 2 increased stimulus intensity by increasing the potency for agonists acting on various GPCRs to activate PLCβ and evoke Ca2+ release and oscillations. This was not due to aberrant localization of IP3Rs in cellular microdomains or IP3R channel activity. Rather, deletion of Homer 2 reduced the effectiveness of exogenous regulators of G proteins signaling proteins (RGS) to inhibit Ca2+ signaling in vivo. Moreover, Homer 2 preferentially bound to PLCβ in pancreatic acini and brain extracts and stimulated GAP activity of RGS4 and of PLCβ in an in vitro reconstitution system, with minimal effect on PLCβ-mediated PIP2 hydrolysis. These findings describe a novel, unexpected function of Homer proteins, demonstrate that RGS proteins and PLCβ GAP activities are regulated functions, and provide a molecular mechanism for tuning signal intensity generated by GPCRs and, thus, the characteristics of [Ca2+]i oscillations.
Homer 2 tunes G protein–coupled receptors stimulus intensity by regulating RGS proteins and PLCβ GAP activities
D.M. Shin, M. Dehoff, and X. Luo contributed equally to this work.
Abbreviations used in this paper: BS, bombesin; CPA, cyclopiazonic acid; GAP, GTPase-activating protein; GPCR, G protein–coupled receptors; IP3, inositol 1,4,5-triphosphate; IP3R, IP3 receptor; pAb, polyclonal antibody; PIP2, phosphatidylinositol-bisphosphate; PMCA, plasma membrane Ca2+ ATPase; RGS, regulators of G proteins signaling; SERCA, sarco/endoplasmic reticulum Ca2+ ATPase; SLO, streptolysin O; WT, wild-type.
Dong Min Shin, Marlin Dehoff, Xiang Luo, Shin Hyeok Kang, Jiangchen Tu, Surendra K. Nayak, Elliott M. Ross, Paul F. Worley, Shmuel Muallem; Homer 2 tunes G protein–coupled receptors stimulus intensity by regulating RGS proteins and PLCβ GAP activities . J Cell Biol 21 July 2003; 162 (2): 293–303. doi: https://doi.org/10.1083/jcb.200210109
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement