The cytoskeleton of eukaryotic cells is comprised of a complex network of distinct but interconnected filament systems that function in cell division, cell motility, and subcellular trafficking of proteins and organelles. A gap in our understanding of this dynamic network is the identification of proteins that connect subsets of cytoskeletal structures. We previously discovered a family of cytoskeleton-associated proteins that includes GAS11, a candidate human tumor suppressor upregulated in growth-arrested cells, and trypanin, a component of the flagellar cytoskeleton of African trypanosomes. Although these proteins are intimately associated with the cytoskeleton, their function has yet to be determined. Here we use double-stranded RNA interference to block trypanin expression in Trypanosoma brucei, and demonstrate that this protein is required for directional cell motility. Trypanin(−) mutants have an active flagellum, but are unable to coordinate flagellar beat. As a consequence, they spin and tumble uncontrollably, occasionally moving backward. Immunofluorescence experiments demonstrate that trypanin is located along the flagellum/flagellum attachment zone and electron microscopic analysis revealed that cytoskeletal connections between the flagellar apparatus and subpellicular cytoskeleton are destabilized in trypanin(−) mutants. These results indicate that trypanin functions as a cytoskeletal linker protein and offer insights into the mechanisms of flagellum-based cell motility.

You do not currently have access to this content.