A more complete picture of the molecules that are critical for the organization of membrane compartments is beginning to emerge through the characterization of proteins in the vesicle-associated membrane protein (also called synaptobrevin) family of membrane trafficking proteins. To better understand the mechanisms of membrane trafficking within the endocytic pathway, we generated a series of monoclonal and polyclonal antibodies against the cytoplasmic domain of vesicle-associated membrane protein 7 (VAMP-7). The antibodies recognize a 25-kD membrane-associated protein in multiple tissues and cell lines. Immunohistochemical analysis reveals colocalization with a marker of late endosomes and lysosomes, lysosome-associated membrane protein 1 (LAMP-1), but not with other membrane markers, including p115 and transferrin receptor. Treatment with nocodozole or brefeldin A does not disrupt the colocalization of VAMP-7 and LAMP-1. Immunoelectron microscopy analysis shows that VAMP-7 is most concentrated in the trans-Golgi network region of the cell as well as late endosomes and transport vesicles that do not contain the mannose-6 phosphate receptor. In streptolysin- O–permeabilized cells, antibodies against VAMP-7 inhibit the breakdown of epidermal growth factor but not the recycling of transferrin. These data are consistent with a role for VAMP-7 in the vesicular transport of proteins from the early endosome to the lysosome.
Vamp-7 Mediates Vesicular Transport from Endosomes to Lysosomes
1.used in this paper: aa, amino acid(s); BFA, brefeldin A; EE, early endosome; GST, glutathione S-transferase; LAMP-1, lysosome-associated membrane protein 1; LE, late endosome; MPR, mannose-6 phosphate receptor; NEM, N-ethylmaleimide; NSF, NEM-sensitive factor; PNS, postnuclear supernatant; RE, recycling endosome; SLO, streptolysin-O; SNAP, soluble NSF attachment protein; SNAP-25, synaptosomal-associated protein of 25 kD; SNARE, SNAP receptor; Tf, transferrin; TfR, Tf receptor; VAMP, vesicle-associated membrane protein
Raj J. Advani, Bin Yang, Rytis Prekeris, Kelly C. Lee, Judith Klumperman, Richard H. Scheller; Vamp-7 Mediates Vesicular Transport from Endosomes to Lysosomes. J Cell Biol 23 August 1999; 146 (4): 765–776. doi: https://doi.org/10.1083/jcb.146.4.765
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement