Golgi stacks are often located near sites of “transitional ER” (tER), where COPII transport vesicles are produced. This juxtaposition may indicate that Golgi cisternae form at tER sites. To explore this idea, we examined two budding yeasts: Pichia pastoris, which has coherent Golgi stacks, and Saccharomyces cerevisiae, which has a dispersed Golgi. tER structures in the two yeasts were visualized using fusions between green fluorescent protein and COPII coat proteins. We also determined the localization of Sec12p, an ER membrane protein that initiates the COPII vesicle assembly pathway. In P. pastoris, Golgi stacks are adjacent to discrete tER sites that contain COPII coat proteins as well as Sec12p. This arrangement of the tER-Golgi system is independent of microtubules. In S. cerevisiae, COPII vesicles appear to be present throughout the cytoplasm and Sec12p is distributed throughout the ER, indicating that COPII vesicles bud from the entire ER network. We propose that P. pastoris has discrete tER sites and therefore generates coherent Golgi stacks, whereas S. cerevisiae has a delocalized tER and therefore generates a dispersed Golgi. These findings open the way for a molecular genetic analysis of tER sites.
Golgi Structure Correlates with Transitional Endoplasmic Reticulum Organization in Pichia pastoris and Saccharomyces cerevisiae
Address correspondence to Benjamin S. Glick, Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637. Tel.: (773) 702-5315. Fax: (773) 702-3172. E-mail: [email protected]
Thanks for reagents and advice to Randy Schekman, Alex Franzusoff, Chris Kaiser, Akihiko Nakano, Vytas Bankatis, Suresh Subramani, Jim Cregg, Steve Gould, Sean Munro, Peter Walter, Gerry Waters, Tom Stevens, Jan Burkhardt, Charles Zuker, and Robert Freedman, and for help with microscopy to Bob Josephs, Yimei Chen, Sharon Parmet, Judith Austin, and Jim McIlvain. We are grateful to Adam Linstedt, Lelio Orci, and Hewson Swift for help with initial explorations of the P. pastoris system, and to Nava Segev, Vivek Malhotra, and Adam Hammond for critical reading of the manuscript.
O.W. Rossanese, J. Soderholm, and B.J. Bevis were supported by National Institutes of Health training grant 5-20942. E.K. Williamson operates the EM core facility funded by the University of Chicago Cancer Research Center. B.S. Glick was supported by National Science Foundation grant MCB-9604342, a Pilot and Feasibility Study Award from the Diabetes Research Foundation, a Basil O'Connor Starter Scholar Research Award (5-FY96-1138) from the March of Dimes Birth Defects Foundation, a Young Investigator Award from the Cancer Research Foundation, an Institutional Research Grant from the American Cancer Society, and a grant from the Pew Charitable Trusts.
Olivia W. Rossanese, Jon Soderholm, Brooke J. Bevis, Irina B. Sears, James O'Connor, Edward K. Williamson, Benjamin S. Glick; Golgi Structure Correlates with Transitional Endoplasmic Reticulum Organization in Pichia pastoris and Saccharomyces cerevisiae . J Cell Biol 5 April 1999; 145 (1): 69–81. doi: https://doi.org/10.1083/jcb.145.1.69
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement