Microfibrils are ubiquitous fibrillin-rich polymers that are thought to provide long-range elasticity to extracellular matrices, including the zonular filaments of mammalian eyes. X-ray diffraction of hydrated bovine zonular filaments demonstrated meridional diffraction peaks indexing on a fundamental axial periodicity (D) of ∼56 nm. A Ca2+-induced reversible change in the intensities of the meridional Bragg peaks indicated that supramolecular rearrangements occurred in response to altered concentrations of free Ca2+. In the presence of Ca2+, the dominant diffracting subspecies were microfibrils aligned in an axial 0.33-D stagger. The removal of Ca2+ caused an enhanced regularity in molecular spacing of individual microfibrils, and the contribution from microfibrils not involved in staggered arrays became more dominant. Scanning transmission electron microscopy of isolated microfibrils revealed that Ca2+ removal or addition caused significant, reversible changes in microfibril mass distribution and periodicity. These results were consistent with evidence from x-ray diffraction. Simulated meridional x-ray diffraction profiles and analyses of isolated Ca2+-containing, staggered microfibrillar arrays were used to interpret the effects of Ca2+. These observations highlight the importance of Ca2+ to microfibrils and microfibrillar arrays in vivo.
Calcium Determines the Supramolecular Organization of Fibrillin-rich Microfibrils
The support of CLRC in granting beam-time on stations 2.1 and 16.1 of the Synchrotron Radiation Source at Daresbury Laboratory is gratefully acknowledged. C.M. Kielty acknowledges the support of the Medical Research Council. T.J. Wess acknowledges the support of Biotechnology and Biological Sciences Research Council. J.L. Ashworth holds a Wellcome Trust Vision Research Training Fellow.
Address all correspondence to T.J. Wess, Department of Biological and Molecular Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom. Tel.: (44) 1786 467775. Fax: (44) 1786 464994. E-mail: [email protected]
T.J. Wess, P.P. Purslow, M.J. Sherratt, J. Ashworth, C.A. Shuttleworth, C.M. Kielty; Calcium Determines the Supramolecular Organization of Fibrillin-rich Microfibrils . J Cell Biol 4 May 1998; 141 (3): 829–837. doi: https://doi.org/10.1083/jcb.141.3.829
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement