Cellubrevin is a ubiquitously expressed membrane protein that is localized to endosomes throughout the endocytotic pathway and functions in constitutive exocytosis. We report that cellubrevin binds with high specificity to BAP31, a representative of a highly conserved family of integral membrane proteins that has recently been discovered to be binding proteins of membrane immunoglobulins. The interaction between BAP31 and cellubrevin is sensitive to high ionic strength and appears to require the transmembrane regions of both proteins. No other proteins of liver membrane extracts copurified with BAP31 on immobilized recombinant cellubrevin, demonstrating that the interaction is specific. Synaptobrevin I bound to BAP31 with comparable affinity, whereas only weak binding was detectable with synaptobrevin II. Furthermore, a fraction of BAP31 and cellubrevin was complexed when each of them was quantitatively immunoprecipitated from detergent extracts of fibroblasts (BHK 21 cells). During purification of clathrin-coated vesicles or early endosomes, BAP31 did not cofractionate with cellubrevin. Rather, the protein was enriched in ER-containing fractions. When BHK cells were analyzed by immunocytochemistry, BAP31 did not overlap with cellubrevin, but rather colocalized with resident proteins of the ER. In addition, immunoreactive vesicles were clustered in a paranuclear region close to the microtubule organizing center, but different from the Golgi apparatus. When microtubules were depolymerized with nocodazole, this accumulation disappeared and BAP31 was confined to the ER. Truncation of the cytoplasmic tail of BAP31 prevented export of cellubrevin, but not of the transferrin receptor from the ER. We conclude that BAP31 represents a novel class of sorting proteins that controls anterograde transport of certain membrane proteins from the ER to the Golgi complex.
Export of Cellubrevin from the Endoplasmic Reticulum Is Controlled by BAP31
W.G. Annaert's current address is Experimental Genetics Group, Center for Human Genetics, Herestraat 49, B-3000 Leuven, Belgium.
U. Kistner's current address is Institut für Anatomie, Medizinische Fakultät (Charite), Humboldt-Universität, Schumannstr. 20–22, D-10098 Berlin, Germany.
Address all correspondence to Reinhard Jahn, Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg, D-37077 Göttingen, Germany. Tel.: (49) 551.201.1635. Fax: (49) 551.201.1639. E-mail: [email protected]
W.G. Annaert was supported by a D. Collen Fellowship and a Philips Fellowship of the Belgian American Educational Foundation, a Fulbright-Hays Award, and a North Atlantic Treaty Organization grant. U. Kistner was a recipient of a fellowship from the Boehringer-Ingelheim Foundation. This work was supported by the Deutsche Forschungsgemeinschaft by a grant to M. Reth through SFB364.
Wim G. Annaert, Bernd Becker, Ute Kistner, Michael Reth, Reinhard Jahn; Export of Cellubrevin from the Endoplasmic Reticulum Is Controlled by BAP31 . J Cell Biol 15 December 1997; 139 (6): 1397–1410. doi: https://doi.org/10.1083/jcb.139.6.1397
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement