In the present paper, we show that transport from early to late endosomes is inhibited at the restrictive temperature in a mutant CHO cell line (ldlF) with a ts-defect in ε coatomer protein (εCOP), although internalization and recycling continue. Early endosomes then appear like clusters of thin tubules devoid of the typical multivesicular regions, which are normally destined to become vesicular intermediates during transport to late endosomes. We also find that the in vitro formation of these vesicles from BHK donor endosomes is inhibited in cytosol prepared from ldlF cells incubated at the restrictive temperature. Although εCOP is rapidly degraded in ldlF cells at the restrictive temperature, cellular amounts of the other COP-I subunits are not affected. Despite the absence of εCOP, we find that a subcomplex of β, β′, and ζCOP is still recruited onto BHK endosomes in vitro, and this binding exhibits the characteristic properties of endosomal COPs with respect to stimulation by GTPγS and sensitivity to the endosomal pH. Previous studies showed that γ and δCOP are not found on endosomes. However, αCOP, which is normally present on endosomes, is no longer recruited when εCOP is missing. In contrast, all COP subunits, except obviously εCOP itself, still bind BHK biosynthetic membranes in a pH-independent manner in vitro. Our observations thus indicate that the biogenesis of multivesicular endosomes is coupled to early endosome organization and depends on COP-I proteins. Our data also show that membrane association and function of endosomal COPs can be dissected: whereas β, β′, and ζCOP retain the capacity to bind endosomal membranes, COP function in transport appears to depend on the presence of α and/or εCOP.
Functional Dissection of COP-I Subunits in the Biogenesis of Multivesicular Endosomes
1. Abbreviations used in this paper: COP, coatomer protein; ECV, endosomal carrier vesicles; HB, homogenization buffer; LDL, low density lipoprotein; Man6P-R, mannose-6-phosphate receptor; MVB, multivesicular body; PNS, postnuclear supernatant; WT, wild-type.
We sincerely wish to thank Marie-Hélène Beuchat for her precious technical help. We wish to thank Monty Krieger for providing us with the ldlF cell line. We also wish to thank Ban-Hock Toh for the gift of anti-EEA1 antibodies, Bernard Hoflack for antibodies against the cation-independent mannose-6-phosphate receptor, Cordula Hater and Felix Wieland for the gift of antibodies against COPs, Jim Rothman for anticoatomer antibodies, Ari Helenius for anticalnexin antibodies, and Thomas Kreis for monoclonal antibodies against βCOP. We are also grateful to Thomas Harder and Volker Gerke for supplying us with the human transferrin receptor cDNA. We wish to thank Monty Krieger, Thomas Kreis, Gisou van der Goot, Katherine Bowers, and all members of the group for critically reading the manuscript and for helpful suggestions.
Address all correspondence to Jean Gruenberg, Biochemistry Department, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland. Tel. and Fax (same number): +41-22-702.6464. E-mail: [email protected]
F. Aniento's new address is Department Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Valencia. c/ Vicent Andrés Estellés, Burjassot (Valencia), Spain.
Feng Gu, Fernando Aniento, Robert G. Parton, Jean Gruenberg; Functional Dissection of COP-I Subunits in the Biogenesis of Multivesicular Endosomes . J Cell Biol 1 December 1997; 139 (5): 1183–1195. doi: https://doi.org/10.1083/jcb.139.5.1183
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement