A null mutation was introduced into the mouse desmin gene by homologous recombination. The desmin knockout mice (Des −/−) develop normally and are fertile. However, defects were observed after birth in skeletal, smooth, and cardiac muscles (Li, Z., E. Colucci-Guyon, M. Pincon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet. 1996. Dev. Biol. 175:362–366; Milner, D.J., G. Weitzer, D. Tran, A. Bradley, and Y. Capetanaki. 1996. J. Cell Biol. 134:1255– 1270). In the present study we have carried out a detailed analysis of somitogenesis, muscle formation, maturation, degeneration, and regeneration in Des −/− mice. Our results demonstrate that all early stages of muscle differentiation and cell fusion occur normally. However, after birth, modifications were observed essentially in weight-bearing muscles such as the soleus or continually used muscles such as the diaphragm and the heart. In the absence of desmin, mice were weaker and fatigued more easily. The lack of desmin renders these fibers more susceptible to damage during contraction. We observed a process of degeneration of myofibers, accompanied by macrophage infiltration, and followed by a process of regeneration. These cycles of degeneration and regeneration resulted in a relative increase in slow myosin heavy chain (MHC) and decrease in fast MHC. Interestingly, this second wave of myofibrillogenesis during regeneration was often aberrant and showed signs of disorganization. Subsarcolemmal accumulation of mitochondria were also observed in these muscles. The lack of desmin was not compensated by an upregulation of vimentin in these mice either during development or regeneration. Absence of desmin filaments within the sarcomere does not interfere with primary muscle formation or regeneration. However, myofibrillogenesis in regenerating fibers is often abortive, indicating that desmin may be implicated in this repair process. The results presented here show that desmin is essential to maintain the structural integrity of highly solicited skeletal muscle.
Desmin Is Essential for the Tensile Strength and Integrity of Myofibrils but Not for Myogenic Commitment, Differentiation, and Fusion of Skeletal Muscle
Address all correspondence to Denise Paulin, SCME, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France. Tel.: 33-1-45-68-84-93. Fax: 33-1-45-68-86-81. e-mail: [email protected]
This work was financed by the Association Française contre les Myopathies, Fondation de France, the Université Paris 7, the CNRS and grants from the Swedish Medical Research Council (12x-3934) and Umëa University (to L.-E. Thornell).
Zhenlin Li, Mathias Mericskay, Onnik Agbulut, Gillian Butler-Browne, Lena Carlsson, Lars-Eric Thornell, Charles Babinet, Denise Paulin; Desmin Is Essential for the Tensile Strength and Integrity of Myofibrils but Not for Myogenic Commitment, Differentiation, and Fusion of Skeletal Muscle . J Cell Biol 6 October 1997; 139 (1): 129–144. doi: https://doi.org/10.1083/jcb.139.1.129
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement