Retinoic acid is a signaling molecule involved in the regulation of growth and morphogenesis during development. There are three types of nuclear receptors for all-trans retinoic acid in mammals, RARα, RARβ, and RARγ, which transduce the retinoic acid signal by inducing or repressing the transcription of target genes (Leid, M., P. Kastner, and P. Chambon. 1992. Trends Biochem. Sci. 17:427–433). While RARα, RARβ, and RARγ are expressed in distinct but overlapping patterns in the developing mouse limb, their exact role in limb development remains unclear. To better understand the role of retinoic acid receptors in mammalian limb development, we have ectopically expressed a modified RARα with constitutive activity (Balkan, W., G.K. Klintworth, C.B. Bock, and E. Linney. 1992. Dev. Biol. 151:622–625) in the limbs of transgenic mice. Overexpression of the transgene was associated with marked pre- and postaxial limb defects, particularly in the hind limb, where expression of the transgene was consistently seen across the whole anteroposterior axis. The defects displayed in these mice recapitulate, to a large degree, many of the congenital limb malformations observed in the fetuses of dams administered high doses of retinoic acid (Kochhar, D.M. 1973. Teratology. 7:289–295). Further analysis of these transgenic animals showed that the defect in skeletogenesis resided at the level of chondrogenesis. Comparison of the expression of the transgene relative to that of endogenous RARα revealed that downregulation of RARα is important in allowing the chondrogenic phenotype to be expressed. These results demonstrate a specific function for RARα in limb development and the regulation of chondroblast differentiation.

You do not currently have access to this content.