Regulation of actin filament length and orientation is important in many actin-based cellular processes. This regulation is postulated to occur through the action of actin-binding proteins. Many actin-binding proteins that modify actin in vitro have been identified, but in many cases, it is not known if this activity is physiologically relevant. Capping protein (CP) is an actin-binding protein that has been demonstrated to control filament length in vitro by binding to the barbed ends and preventing the addition or loss of actin monomers. To examine the in vivo role of CP, we have performed a molecular and genetic characterization of the beta subunit of capping protein from Drosophila melanogaster. We have identified mutations in the Drosophila beta subunit-these are the first CP mutations in a multicellular organism, and unlike CP mutations in yeast, they are lethal, causing death during the early larval stage. Adult files that are heterozygous for a pair of weak alleles have a defect in bristle morphology that is correlated to disorganized actin bundles in developing bristles. Our data demonstrate that CP has an essential function during development, and further suggest that CP is required to regulate actin assembly during the development of specialized structures that depend on actin for their morphology.
Skip Nav Destination
Article navigation
15 June 1996
Article|
June 15 1996
Actin organization, bristle morphology, and viability are affected by actin capping protein mutations in Drosophila.
R Hopmann,
R Hopmann
Department of Biology, Washington University, St. Louis, Missouri 63130, USA. [email protected]
Search for other works by this author on:
J A Cooper,
J A Cooper
Department of Biology, Washington University, St. Louis, Missouri 63130, USA. [email protected]
Search for other works by this author on:
K G Miller
K G Miller
Department of Biology, Washington University, St. Louis, Missouri 63130, USA. [email protected]
Search for other works by this author on:
R Hopmann
Department of Biology, Washington University, St. Louis, Missouri 63130, USA. [email protected]
J A Cooper
Department of Biology, Washington University, St. Louis, Missouri 63130, USA. [email protected]
K G Miller
Department of Biology, Washington University, St. Louis, Missouri 63130, USA. [email protected]
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1996) 133 (6): 1293–1305.
Citation
R Hopmann, J A Cooper, K G Miller; Actin organization, bristle morphology, and viability are affected by actin capping protein mutations in Drosophila.. J Cell Biol 15 June 1996; 133 (6): 1293–1305. doi: https://doi.org/10.1083/jcb.133.6.1293
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement