The acrosome reaction in many animals is a coupled reaction involving an exocytotic step and a dramatic change in cell shape. It has been proposed that these morphological changes are regulated by intracellular ions such as Ca2+ and H+. We report here simultaneous visualization, under a multiview microscope, of intracellular free Ca2+ concentration ([Ca2+]i), intracellular pH (pHi), and morphological changes in a single starfish sperm (Asterina pectinifera). [Ca2+]i and pHi were monitored with the fluorescent probes indo-1 and SNARF-1, respectively. The acrosome reaction was induced with ionomycin. After the introduction of ionomycin in the medium, [Ca2+]i increased gradually and reached a plateau in approximately 30 s. The fusion of the acrosomal vacuole took place abruptly before the plateau, during the rising phase. Although the speed of the [Ca2+]i increase varied among the many sperm tested, exocytosis in all cases occurred at the same [Ca2+]i of approximately 2 microM (estimated using the dissociation constant of indo-1 for Ca2+ of 1.1 microM). This result suggests that the exocytotic mechanism in starfish sperm responds to [Ca2+]i rapidly, with a reaction time of the order of one second or less. Unlike the change in [Ca2+]i, an abrupt increase in pHi was observed immediately after exocytosis, suggesting the presence of a proton mobilizing system that is triggered by exocytosis. The rapid increase in pHi coincided with the formation of the acrosomal rod and the beginning of vigorous movement of the flagellum, both of which have been proposed to be pHi dependent. The exocytotic event itself was visualized with the fluorescent membrane probe RH292. The membrane of the acrosomal vacuole, concealed from the external medium in an unreacted sperm, was seen to fuse with the plasma membrane.
Skip Nav Destination
Article navigation
15 November 1995
Article|
November 15 1995
Regulatory mechanisms of the acrosome reaction revealed by multiview microscopy of single starfish sperm.
I Sase,
I Sase
Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.
Search for other works by this author on:
T Okinaga,
T Okinaga
Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.
Search for other works by this author on:
M Hoshi,
M Hoshi
Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.
Search for other works by this author on:
G W Feigenson,
G W Feigenson
Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.
Search for other works by this author on:
K Kinosita, Jr
K Kinosita, Jr
Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.
Search for other works by this author on:
I Sase
Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.
T Okinaga
Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.
M Hoshi
Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.
G W Feigenson
Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.
K Kinosita, Jr
Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1995) 131 (4): 963–973.
Citation
I Sase, T Okinaga, M Hoshi, G W Feigenson, K Kinosita; Regulatory mechanisms of the acrosome reaction revealed by multiview microscopy of single starfish sperm.. J Cell Biol 15 November 1995; 131 (4): 963–973. doi: https://doi.org/10.1083/jcb.131.4.963
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement