When cells enter mitosis, RNA synthesis ceases. Yet the RNA polymerase I (pol I) transcription machinery involved in the production of pre-rRNA remains bound to the nucleolus organizing region (NOR), the chromosome site harboring the tandemly repeated rRNA genes. Here we examine whether rDNA transcription units are transiently blocked or "frozen" during mitosis. By using fluorescent in situ hybridization we were unable to detect nascent pre-rRNA chains on the NORs of mouse 3T3 and rat kangaroo PtK2 cells. Appropriate controls showed that our approach was sensitive enough to visualize, at the light microscopic level, individual transcriptionally active rRNA genes both in situ after experimental unfolding of nucleoli and in chromatin spreads ("Miller spreads"). Analysis of the cell cycle-dependent redistribution of transcript-associated components also revealed that most transcripts are released from the rDNA at mitosis. Upon disintegration of the nucleolus during mitosis, U3 small nucleolar RNA (snoRNA) and the nucleolar proteins fibrillarin and nucleolin became dispersed throughout the cytoplasm and were excluded from the NORs. Together, our data rule out the presence of "frozen Christmas-trees" at the mitotic NORs but are compatible with the view that inactive pol I remains on the rDNA. We propose that expression of the rRNA genes is regulated during mitosis at the level of transcription elongation, similarly to what is known for a number of genes transcribed by pol II. Such a mechanism may explain the decondensed state of the NOR chromatin and the immediate transcriptional reactivation of the rRNA genes following mitosis.
Skip Nav Destination
Article navigation
1 May 1995
Article|
May 01 1995
A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitosis.
D Weisenberger,
D Weisenberger
Department of Cell and Developmental Biology, Theodor-Boveri-Institute, University of Würzburg, Germany.
Search for other works by this author on:
U Scheer
U Scheer
Department of Cell and Developmental Biology, Theodor-Boveri-Institute, University of Würzburg, Germany.
Search for other works by this author on:
D Weisenberger
Department of Cell and Developmental Biology, Theodor-Boveri-Institute, University of Würzburg, Germany.
U Scheer
Department of Cell and Developmental Biology, Theodor-Boveri-Institute, University of Würzburg, Germany.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1995) 129 (3): 561–575.
Citation
D Weisenberger, U Scheer; A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitosis.. J Cell Biol 1 May 1995; 129 (3): 561–575. doi: https://doi.org/10.1083/jcb.129.3.561
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement