Keratin intermediate filaments (IF) are obligate heteropolymers containing equal amounts of type I and type II keratin. We have previously shown that microinjected biotinylated type I keratin is rapidly incorporated into endogenous bundles of keratin IF (tonofilaments) of PtK2 cells. In this study we show that the earliest steps in the assembly of keratin subunits into tonofilaments involve the extremely rapid formation of discrete aggregates of microinjected keratin. These are seen as fluorescent spots containing both type I and type II keratins within 1 min post-injection as determined by double label immunofluorescence. These observations suggest that endogenous type II keratin subunits can be rapidly mobilized from their endogenous state to form complexes with the injected type I protein. Furthermore, confocal microscopy and immunogold electron microscopy suggest that the type I-type II keratin spots from in close association with the endogenous keratin IF network. When the biotinylated protein is injected at concentrations of 0.3-0.5 mg/ml, the organization of the endogenous network of tonofilaments remains undisturbed during incorporation into tonofilaments. However, microinjection of 1.5-2.0 mg/ml of biotinylated type I results in significant alterations in the organization and assembly state of the endogenous keratin IF network soon after microinjection. The results of this study are consistent with the existence of a state of equilibrium between keratin subunits and polymerized keratin IF in epithelial cells, and provide further proof that IF are dynamic elements of the cytoskeleton of mammalian cells.
Skip Nav Destination
Article navigation
1 July 1993
Article|
July 01 1993
Dynamics of keratin assembly: exogenous type I keratin rapidly associates with type II keratin in vivo
RK Miller,
RK Miller
Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611.
Search for other works by this author on:
S Khuon,
S Khuon
Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611.
Search for other works by this author on:
RD Goldman
RD Goldman
Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611.
Search for other works by this author on:
RK Miller
Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611.
S Khuon
Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611.
RD Goldman
Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1993) 122 (1): 123–135.
Citation
RK Miller, S Khuon, RD Goldman; Dynamics of keratin assembly: exogenous type I keratin rapidly associates with type II keratin in vivo. J Cell Biol 1 July 1993; 122 (1): 123–135. doi: https://doi.org/10.1083/jcb.122.1.123
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement