The nuclear pore complex spans the nuclear envelope and functions as a macromolecular transporter in the ATP-dependent process of nucleocytoplasmic transport. In this report, we present three dimensional (3D) structures for both membrane-associated and detergent-extracted Xenopus NPCs, imaged in frozen buffers by cryo-electron microscopy. A comparison of the differing configurations present in the 3D maps suggests that the spokes may possess an intrinsic conformational flexibility. When combined with recent data from a 3D map of negatively stained NPCs (Hinshaw, J. E., B. O. Carragher, and R. A. Milligan. 1992. Cell. 69:1133-1141), these observations suggest a minimal domain model for the spoke-ring complex which may account for the observed plasticity of this assembly. Moreover, lumenal domains in adjacent spokes are interconnected by radial arm dimers, forming a lumenal ring that may be responsible for anchoring the NPC within the nuclear envelope pore. Importantly, the NPC transporter is visualized as a centrally tapered cylinder that spans the entire width of the NPC, in a direction normal to the nuclear envelope. The central positioning, tripartite structure, and hollow nature of the transporter suggests that it may form a macromolecular transport channel, with a globular gating domain at each end. Finally, the packing of the transporter within the spokes creates a set of eight internal channels that may be responsible, in part, for the diffusion of ions and small molecules across the nuclear envelope.

This content is only available as a PDF.
You do not currently have access to this content.