The sequence of tubulin-tyrosine ligase (TTL), the enzyme catalyzing the ATP-dependent posttranslational addition of a tyrosine to the carboxyterminal end of detyrosinated alpha-tubulin, has been determined. TTL from bovine and porcine brain was purified by immunoaffinity chromatography and extensively characterized by protein sequencing. Oligonucleotides derived from the protein sequence were synthesized and partial cDNA sequences were obtained using reversed transcribed brain mRNA in polymerase chain reactions. Polymerase chain reaction fragments were used to isolate a full-length cDNA clone from a randomly primed lambda gt10 cDNA library obtained from embryonic porcine brain mRNA. Porcine TTL is encoded by 1,137 nucleotides corresponding to 379 amino acid residues. It has a molecular weight of 43,425 and a calculated isoelectric point of 6.51. Northern blot analysis revealed a surprisingly long mRNA (approximately 6 kb in embryonic porcine brain). The protein sequence of TTL shares no extended homology with the sequences in the data banks. TTL contains a potential serine phosphorylation site for cAMP-dependent protein kinase (RKAS at positions 73 to 76). Residues 244 to 258 lie at the surface of the molecule. A rabbit antibody raised against a synthetic peptide corresponding to this sequence binds to native TTL. The same sequence contains the cleavage site for endoproteinase Glu-C (residue 248) previously shown to convert TTL into a nicked derivative in which the two fragments still form a tight complex but don't display enzymatic activity.
Skip Nav Destination
Article navigation
1 February 1993
Article|
February 01 1993
Characterization of the tubulin-tyrosine ligase.
K Ersfeld,
K Ersfeld
Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany.
Search for other works by this author on:
J Wehland,
J Wehland
Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany.
Search for other works by this author on:
U Plessmann,
U Plessmann
Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany.
Search for other works by this author on:
H Dodemont,
H Dodemont
Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany.
Search for other works by this author on:
V Gerke,
V Gerke
Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany.
Search for other works by this author on:
K Weber
K Weber
Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany.
Search for other works by this author on:
K Ersfeld
Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany.
J Wehland
Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany.
U Plessmann
Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany.
H Dodemont
Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany.
V Gerke
Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany.
K Weber
Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1993) 120 (3): 725–732.
Citation
K Ersfeld, J Wehland, U Plessmann, H Dodemont, V Gerke, K Weber; Characterization of the tubulin-tyrosine ligase.. J Cell Biol 1 February 1993; 120 (3): 725–732. doi: https://doi.org/10.1083/jcb.120.3.725
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement