Movements of membrane-bounded organelles through cytoplasm frequently occur along microtubules, as in the neuron-specific case of fast axonal transport. To shed light on how microtubule-based organelle motility is regulated, pharmacological probes for GTP-binding proteins, or protein kinases or phosphatases were perfused into axoplasm extruded from squid (Loligo pealei) giant axons, and effects on fast axonal transport were monitored by quantitative video-enhanced light microscopy. GTP gamma S caused concentration-dependent and time-dependent declines in organelle transport velocities. GDP beta S was a less potent inhibitor. Excess GTP, but not GDP, masked the effects of coperfused GTP gamma S. The effects of GTP gamma S on transport were not mimicked by broad spectrum inhibitors of protein kinases (K-252a) or phosphatases (microcystin LR and okadaic acid), or as shown earlier, by ATP gamma S. Therefore, suppression of organelle motility by GTP gamma S was guanine nucleotide-specific and evidently did not involve irreversible transfer of thiophosphate groups to protein. Instead, the data imply that organelle transport in the axon is modulated by cycles of GTP hydrolysis and nucleotide exchange by one or more GTP-binding proteins. Fast axonal transport was not perturbed by AlF4-, indicating that the GTP gamma S-sensitive factors do not include heterotrimeric G-proteins. Potential axoplasmic targets of GTP gamma S include dynamin and multiple small GTP-binding proteins, which were shown to be present in squid axoplasm. These collective findings suggest a novel strategy for regulating microtubule-based organelle transport and a new role for GTP-binding proteins.
Skip Nav Destination
Article navigation
15 January 1993
Article|
January 15 1993
GTP gamma S inhibits organelle transport along axonal microtubules.
G S Bloom,
G S Bloom
Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235-9039.
Search for other works by this author on:
B W Richards,
B W Richards
Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235-9039.
Search for other works by this author on:
P L Leopold,
P L Leopold
Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235-9039.
Search for other works by this author on:
D M Ritchey,
D M Ritchey
Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235-9039.
Search for other works by this author on:
S T Brady
S T Brady
Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235-9039.
Search for other works by this author on:
G S Bloom
Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235-9039.
B W Richards
Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235-9039.
P L Leopold
Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235-9039.
D M Ritchey
Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235-9039.
S T Brady
Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235-9039.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1993) 120 (2): 467–476.
Citation
G S Bloom, B W Richards, P L Leopold, D M Ritchey, S T Brady; GTP gamma S inhibits organelle transport along axonal microtubules.. J Cell Biol 15 January 1993; 120 (2): 467–476. doi: https://doi.org/10.1083/jcb.120.2.467
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement