We have investigated the time course of expression of the alpha and beta triad junctional foot proteins in embryonic chick pectoral muscle. The level of [3H]ryanodine binding in muscle homogenates is low until day E20 of embryonic development, then increases dramatically at the time of hatching reaching adult levels by day N7 posthatch. The alpha and beta foot protein isoforms increase in abundance concomitantly with [3H]ryanodine binding. Using foot protein isoform-specific antibodies, the alpha foot protein is detected in a majority of fibers in day E10 muscle, while the beta isoform is first observed at low levels in a few fibers in day E15 muscle. A high molecular weight polypeptide, distinct from the alpha and beta proteins, is recognized by antifoot protein antibodies. This polypeptide is observed in day E8 muscle and declines in abundance with continued development. It appears to exist as a monomer and does not bind [3H]ryanodine. In contrast, the alpha isoform present in day E10 muscle and the beta isoform in day E20 muscle are oligomeric and bind [3H]ryanodine suggesting that they may exist as functional calcium channels in differentiating muscle. Comparison of the intracellular distributions of the alpha foot protein, f-actin, the heavy chain of myosin and titin in day E10 muscle indicates that the alpha foot protein is expressed during myofibril assembly and Z line formation. The differential expression of the foot protein isoforms in developing muscle, and their continued expression in mature muscle, is consistent with these proteins making different functional contributions. In addition, the expression of the alpha isoform during the time of organization of a differentiated muscle morphology suggests that foot proteins may participate in events involved in muscle differentiation.
Skip Nav Destination
Article navigation
15 May 1991
Article|
May 15 1991
Foot protein isoforms are expressed at different times during embryonic chick skeletal muscle development.
J L Sutko,
J L Sutko
Department of Pharmacology, University of Nevada, Reno 89557.
Search for other works by this author on:
J A Airey,
J A Airey
Department of Pharmacology, University of Nevada, Reno 89557.
Search for other works by this author on:
K Murakami,
K Murakami
Department of Pharmacology, University of Nevada, Reno 89557.
Search for other works by this author on:
M Takeda,
M Takeda
Department of Pharmacology, University of Nevada, Reno 89557.
Search for other works by this author on:
C Beck,
C Beck
Department of Pharmacology, University of Nevada, Reno 89557.
Search for other works by this author on:
T Deerinck,
T Deerinck
Department of Pharmacology, University of Nevada, Reno 89557.
Search for other works by this author on:
M H Ellisman
M H Ellisman
Department of Pharmacology, University of Nevada, Reno 89557.
Search for other works by this author on:
J L Sutko
Department of Pharmacology, University of Nevada, Reno 89557.
J A Airey
Department of Pharmacology, University of Nevada, Reno 89557.
K Murakami
Department of Pharmacology, University of Nevada, Reno 89557.
M Takeda
Department of Pharmacology, University of Nevada, Reno 89557.
C Beck
Department of Pharmacology, University of Nevada, Reno 89557.
T Deerinck
Department of Pharmacology, University of Nevada, Reno 89557.
M H Ellisman
Department of Pharmacology, University of Nevada, Reno 89557.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1991) 113 (4): 793–803.
Citation
J L Sutko, J A Airey, K Murakami, M Takeda, C Beck, T Deerinck, M H Ellisman; Foot protein isoforms are expressed at different times during embryonic chick skeletal muscle development.. J Cell Biol 15 May 1991; 113 (4): 793–803. doi: https://doi.org/10.1083/jcb.113.4.793
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement