We have examined the effects of collagen IV on the morphological development of embryonic rat sympathetic neurons in vitro. In short-term (less than or equal to 24 h) culture, collagen IV accelerated process outgrowth, causing increases in the number of neurites and total neuritic length. Analysis of proteolytic fragments of collagen IV indicated that the NC1 domain was nearly as active as the intact molecule in stimulating process outgrowth; in contrast, the 7S domain and triple helix-rich fragments of collagen IV were inactive. Moreover, anti-NC1 antiserum inhibited neuritic outgrowth on collagen IV by 79%. In long-term (up to 28 d) cultures, neurons chronically exposed to collagen IV maintained a single axon but failed to form dendrites. Thus, the NC1 domain of collagen IV can alter neuronal development by selectively stimulating axonal growth. Comparison of collagen IV's effects to those of laminin revealed that these molecules exert quantitatively different effects on the rate of initial axon growth and the number of axons extended by sympathetic neurons. Moreover, neuritic outgrowth on collagen IV, but not laminin, was blocked by cycloheximide. We also observed differences in the receptors mediating the neurite-promoting activity of these proteins. Two different antisera that recognize beta 1 integrins each blocked neuritic outgrowth on both collagen IV and laminin; however, an mAb (3A3) specific for the alpha 1 beta 1 integrin inhibited collagen IV but not laminin-induced process growth in cultures of both sympathetic and dorsal root neurons. These data suggest that immunologically distinct integrins mediate the response of peripheral neurons to collagen IV and laminin.
Skip Nav Destination
Article navigation
15 April 1991
Article|
April 15 1991
The NC1 domain of type IV collagen promotes axonal growth in sympathetic neurons through interaction with the alpha 1 beta 1 integrin.
P J Lein,
P J Lein
Department of Pharmacology and Therapeutics, School of Medicine, State University of New York, Buffalo 14214.
Search for other works by this author on:
D Higgins,
D Higgins
Department of Pharmacology and Therapeutics, School of Medicine, State University of New York, Buffalo 14214.
Search for other works by this author on:
D C Turner,
D C Turner
Department of Pharmacology and Therapeutics, School of Medicine, State University of New York, Buffalo 14214.
Search for other works by this author on:
L A Flier,
L A Flier
Department of Pharmacology and Therapeutics, School of Medicine, State University of New York, Buffalo 14214.
Search for other works by this author on:
V P Terranova
V P Terranova
Department of Pharmacology and Therapeutics, School of Medicine, State University of New York, Buffalo 14214.
Search for other works by this author on:
P J Lein
Department of Pharmacology and Therapeutics, School of Medicine, State University of New York, Buffalo 14214.
D Higgins
Department of Pharmacology and Therapeutics, School of Medicine, State University of New York, Buffalo 14214.
D C Turner
Department of Pharmacology and Therapeutics, School of Medicine, State University of New York, Buffalo 14214.
L A Flier
Department of Pharmacology and Therapeutics, School of Medicine, State University of New York, Buffalo 14214.
V P Terranova
Department of Pharmacology and Therapeutics, School of Medicine, State University of New York, Buffalo 14214.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1991) 113 (2): 417–428.
Citation
P J Lein, D Higgins, D C Turner, L A Flier, V P Terranova; The NC1 domain of type IV collagen promotes axonal growth in sympathetic neurons through interaction with the alpha 1 beta 1 integrin.. J Cell Biol 15 April 1991; 113 (2): 417–428. doi: https://doi.org/10.1083/jcb.113.2.417
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement