Mouse L cells that possess the cation-independent mannose 6-phosphate (Man 6-P)/insulin-like growth factor (IGF) II receptor change the extent to which they dephosphorylate endocytosed acid hydrolases in response to serum (Einstein, R., and C. A. Gabel. 1989. J. Cell Biol. 109:1037-1046). To investigate the mechanism by which dephosphorylation competence is regulated, the dephosphorylation of individual acid hydrolases was studied in Man 6-P/IGF II receptor-positive and -deficient cell lines. 125I-labeled Man 6-P-containing acid hydrolases were proteolytically processed but remained phosphorylated when endocytosed by receptor-positive L cells maintained in the absence of serum; after the addition of serum, however, the cell-associated hydrolases were dephosphorylated. Individual hydrolases were dephosphorylated at distinct rates and to different extents. In contrast, the same hydrolases were dephosphorylated equally and completely after entry into Man 6-P/IGF II receptor-positive Chinese hamster ovary (CHO) cells. The dephosphorylation competence of Man 6-P/IGF II receptor-deficient mouse J774 cells was more limited. beta-Glucuronidase produced by these cells underwent a limited dephosphorylation in transit to lysosomes such that diphosphorylated oligosaccharides were converted to monophosphorylated species. The overall quantity of phosphorylated oligosaccharides associated with the enzyme, however, did not decrease within the lysosomal compartment. Likewise, beta-glucuronidase was not dephosphorylated when introduced into J774 cells via Fc receptor-mediated endocytosis. The CHO and J774 cell lysosomes, therefore, display opposite extremes with respect to their capacity to dephosphorylate acid hydrolases; within CHO cell lysosomes acid hydrolases are rapidly and efficiently dephosphorylated, but within J774 cell lysosomes the same acid hydrolases remain phosphorylated. This difference in processing indicates that lysosomes themselves exist in a dephosphorylation-competent and -incompetent state. Man 6-P-bearing acid hydrolases endocytosed by the L+ cells in the absence of serum were not distributed uniformly throughout the lysosomal compartment. The change in the dephosphorylation competence of L cells in response to serum suggests, therefore, that these cells contain multiple populations of lysosomes that differ with respect to their content of a mannose 6-phosphatase, and that serum factors affect the distribution of hydrolases between the different compartments.
Skip Nav Destination
Article navigation
1 January 1991
Article|
January 01 1991
Cell- and ligand-specific dephosphorylation of acid hydrolases: evidence that the mannose 6-phosphatase is controlled by compartmentalization.
R Einstein,
R Einstein
Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York 10032.
Search for other works by this author on:
C A Gabel
C A Gabel
Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York 10032.
Search for other works by this author on:
R Einstein
Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York 10032.
C A Gabel
Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York 10032.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1991) 112 (1): 81–94.
Citation
R Einstein, C A Gabel; Cell- and ligand-specific dephosphorylation of acid hydrolases: evidence that the mannose 6-phosphatase is controlled by compartmentalization.. J Cell Biol 1 January 1991; 112 (1): 81–94. doi: https://doi.org/10.1083/jcb.112.1.81
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement