Microtubule-associated proteins (MAPs) in neurons establish functional associations with microtubules, sometimes at considerable distances from their site of synthesis. In this study we identified MAP 1A in mouse retinal ganglion cells and characterized for the first time its in vivo dynamics in relation to axonally transported tubulin. A soluble 340-kD polypeptide was strongly radiolabeled in ganglion cells after intravitreal injection of [35S]methionine or [3H]proline. This polypeptide was identified as MAP 1A on the basis of its co-migration on SDS gels with MAP 1A from brain microtubules; its co-assembly with microtubules in the presence of taxol or during cycles of assembly-disassembly; and its cross-reaction with well-characterized antibodies against MAP 1A in immunoblotting and immunoprecipitation assays. Glial cells of the optic nerve synthesized considerably less MAP 1A than neurons. The axoplasmic transport of MAP 1A differed from that of tubulin. Using two separate methods, we observed that MAP 1A advanced along optic axons at a rate of 1.0-1.2 mm/d, a rate typical of the Group IV (SCb) phase of transport, while tubulin moved 0.1-0.2 mm/d, a group V (SCa) transport rate. At least 13% of the newly synthesized MAP 1A entering optic axons was incorporated uniformly along axons into stationary axonal structures. The half-residence time of stationary MAP 1A in axons (55-60 d) was 4.6 times longer than that of MAP 1A moving in Group IV, indicating that at least 44% of the total MAP 1A in axons is stationary. These results demonstrate that cytoskeletal proteins that become functionally associated with each other in axons may be delivered to these sites at different transport rates. Stable associations between axonal constituents moving at different velocities could develop when these elements leave the transport vector and incorporate into the stationary cytoskeleton.
Skip Nav Destination
Article navigation
1 February 1990
Article|
February 01 1990
Synthesis, axonal transport, and turnover of the high molecular weight microtubule-associated protein MAP 1A in mouse retinal ganglion cells: tubulin and MAP 1A display distinct transport kinetics.
R A Nixon,
R A Nixon
Mailman Research Center, McLean Hospital, Belmont, Massachusetts 02178.
Search for other works by this author on:
I Fischer,
I Fischer
Mailman Research Center, McLean Hospital, Belmont, Massachusetts 02178.
Search for other works by this author on:
S E Lewis
S E Lewis
Mailman Research Center, McLean Hospital, Belmont, Massachusetts 02178.
Search for other works by this author on:
R A Nixon
Mailman Research Center, McLean Hospital, Belmont, Massachusetts 02178.
I Fischer
Mailman Research Center, McLean Hospital, Belmont, Massachusetts 02178.
S E Lewis
Mailman Research Center, McLean Hospital, Belmont, Massachusetts 02178.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1990) 110 (2): 437–448.
Citation
R A Nixon, I Fischer, S E Lewis; Synthesis, axonal transport, and turnover of the high molecular weight microtubule-associated protein MAP 1A in mouse retinal ganglion cells: tubulin and MAP 1A display distinct transport kinetics.. J Cell Biol 1 February 1990; 110 (2): 437–448. doi: https://doi.org/10.1083/jcb.110.2.437
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement