Cells contain multiple tubulin isotypes that are the products of different genes and posttranslational modifications. It has been proposed that tubulin isotypes become segregated into different classes of microtubules each adapted to specific activities and functions. To determine if mixtures of tubulin isotypes segregate into different classes of polymers in vitro, we used immunoelectron microscopy to examine the composition of microtubule copolymers that assembled from mixtures of purified tubulin subunits from chicken brain and erythrocytes, each of which has been shown to exhibit distinct assembly properties in vitro. We observed that (a) the two isotypes coassemble rapidly and efficiently despite the fact that each isotype exhibits its own unique biochemical and assembly properties; (b) at low monomer concentrations the ratio of tubulin isotypes changes along the lengths of elongating copolymers resulting in gradients in immuno-gold labeling; (c) two distinct classes of copolymers each containing a distinct ratio of isotypes assemble simultaneously in the same subunit mixture; and (d) subunits and polymers of different isotypes associate nearly equally well with each other, there being only a slight bias favoring interactions among subunits and polymers of the same isotype. The observations agree with previous studies on the homogeneous distribution of multiple isotypes within cells and suggest that if segregation of isotypes does occur in vivo, it is most likely directed by cell-specific microtubule-associated proteins (MAPs) or specialized intracellular conditions.
Skip Nav Destination
Article navigation
1 January 1990
Article|
January 01 1990
Copolymerization of two distinct tubulin isotypes during microtubule assembly in vitro.
H N Baker,
H N Baker
Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
Search for other works by this author on:
S W Rothwell,
S W Rothwell
Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
Search for other works by this author on:
W A Grasser,
W A Grasser
Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
Search for other works by this author on:
K T Wallis,
K T Wallis
Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
Search for other works by this author on:
D B Murphy
D B Murphy
Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
Search for other works by this author on:
H N Baker
Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
S W Rothwell
Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
W A Grasser
Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
K T Wallis
Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
D B Murphy
Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1990) 110 (1): 97–104.
Citation
H N Baker, S W Rothwell, W A Grasser, K T Wallis, D B Murphy; Copolymerization of two distinct tubulin isotypes during microtubule assembly in vitro.. J Cell Biol 1 January 1990; 110 (1): 97–104. doi: https://doi.org/10.1083/jcb.110.1.97
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement