Genes that function in translocation of secretory protein precursors into the ER have been identified by a genetic selection for mutant yeast cells that fail to translocate a signal peptide-cytosolic enzyme hybrid protein. The new mutants, sec62 and sec63, are thermosensitive for growth and accumulate a variety of soluble secretory and vacuolar precursors whose electrophoretic mobilities coincide with those of the corresponding in vitro translated polypeptides. Proteolytic sensitivity of precursor molecules in extracts of mutant cells confirms that polypeptide translocation is blocked. Some form of interaction among the SEC61 (Deshaies, R. J., and R. Schekman. 1987. J. Cell Biol. 105:633-645), SEC62 and SEC63 gene products is suggested by the observation that haploid cells containing any pair of the mutations are inviable at 24 degrees C and show a marked enhancement of the translocation defect. The translocation defects of two mutants (sec62 and sec63) have been reproduced in vitro. sec63 microsomes display low and thermolabile translocation activity for prepro-alpha-factor (pp alpha F) synthesized with a cytosol fraction from wild type yeast. These gene products may constitute part of the polypeptide recognition or translocation apparatus of the ER membrane. Pulse-chase analysis of the translocation-defective mutants demonstrates that insertion of pp alpha F into the ER can proceed posttranslationally.
Skip Nav Destination
Article navigation
1 December 1989
Article|
December 01 1989
Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast.
J A Rothblatt,
J A Rothblatt
Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720.
Search for other works by this author on:
R J Deshaies,
R J Deshaies
Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720.
Search for other works by this author on:
S L Sanders,
S L Sanders
Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720.
Search for other works by this author on:
G Daum,
G Daum
Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720.
Search for other works by this author on:
R Schekman
R Schekman
Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720.
Search for other works by this author on:
J A Rothblatt
Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720.
R J Deshaies
Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720.
S L Sanders
Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720.
G Daum
Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720.
R Schekman
Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1989) 109 (6): 2641–2652.
Citation
J A Rothblatt, R J Deshaies, S L Sanders, G Daum, R Schekman; Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast.. J Cell Biol 1 December 1989; 109 (6): 2641–2652. doi: https://doi.org/10.1083/jcb.109.6.2641
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement