We have developed a nuclear transformation system for Chlamydomonas reinhardtii, using micro-projectile bombardment to introduce the gene encoding nitrate reductase into a nit1 mutant strain which lacks nitrate reductase activity. By using either supercoiled or linear plasmid DNA, transformants were recovered consistently at a low efficiency, on the order of 15 transformants per microgram of plasmid DNA. In all cases the transforming DNA was integrated into the nuclear genome, usually in multiple copies. Most of the introduced copies were genetically linked to each other, and they were unlinked to the original nit1 locus. The transforming DNA and nit+ phenotype were stable through mitosis and meiosis, even in the absence of selection. nit1 transcripts of various sizes were expressed at levels equal to or greater than those in wild-type nit+ strains. In most transformants, nitrate reductase enzyme activity was expressed at approximately wild-type levels. In all transformants, nit1 mRNA and nitrate reductase enzyme activity were repressed in cells grown on ammonium medium, showing that expression of the integrated nit1 genes was regulated normally. When a second plasmid with a nonselectable gene was bombarded into the cells along with the nit1 gene, transformants carrying DNA from both plasmids were recovered. In some cases, expression of the unselected gene could be detected. With the advent of nuclear transformation in Chlamydomonas, it becomes the first photosynthetic organism in which both the nuclear and chloroplast compartments can be transformed.
Skip Nav Destination
Article navigation
1 December 1989
Article|
December 01 1989
Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase.
K L Kindle,
K L Kindle
Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853.
Search for other works by this author on:
R A Schnell,
R A Schnell
Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853.
Search for other works by this author on:
E Fernández,
E Fernández
Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853.
Search for other works by this author on:
P A Lefebvre
P A Lefebvre
Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853.
Search for other works by this author on:
K L Kindle
Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853.
R A Schnell
Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853.
E Fernández
Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853.
P A Lefebvre
Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1989) 109 (6): 2589–2601.
Citation
K L Kindle, R A Schnell, E Fernández, P A Lefebvre; Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase.. J Cell Biol 1 December 1989; 109 (6): 2589–2601. doi: https://doi.org/10.1083/jcb.109.6.2589
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement