The transbilayer distribution of exogenous phospholipids incorporated into human erythrocytes is monitored through cell morphology changes and by the extraction of incorporated 14C-labeled lipids. Dilauroylphosphatidylserine (DLPS) and dilauroylphosphatidylcholine (DLPC) transfer spontaneously from sonicated unilamellar vesicles to erythrocytes, inducing a discocyte-to-echinocyte shape change within 5 min. DLPC-induced echinocytes revert slowly (t1/2 approximately 8 h) to discocytes, but DLPS-treated cells revert rapidly (10-20 min) to discocytes and then become invaginate stomatocytes. The second phase of the phosphatidylserine (PS)-induced shape change, conversion of echinocytes to stomatocytes, can be inhibited by blocking cell protein sulfhydryl groups or by depleting intracellular ATP or magnesium (Daleke, D. L., and W. H. Huestis. 1985. Biochemistry. 24:5406-5416). These cell shape changes are consistent with incorporation of phosphatidylcholine (PC) and PS into the membrane outer monolayer followed by selective and energy-dependent translocation of PS to the membrane inner monolayer. This hypothesis is explored by correlating cell shape with the fraction of the exogenous lipid accessible to extraction into phospholipid vesicles. Upon exposure to recipient vesicles, DLPC-induced echinocytes revert to discoid forms within 5 min, concomitant with the removal of most (88%) of the radiolabeled lipid. On further incubation, 97% of the foreign PC transfers to recipient vesicles. Treatment of DLPS-induced stomatocytes with acceptor vesicles extracts foreign PS only partially (22%) and does not affect cell shape significantly. Cell treated with inhibitors of aminophospholipid translocation (sulfhydryl blockers or intracellular magnesium depletion) and then incubated with either DLPS or DLPC become echinocytic and do not revert to discocytic or stomatocytic shape for many hours. On treatment with recipient vesicles, these echinocytes revert to discocytes in both cases, with concomitant extraction of 88-99% of radiolabeled PC and 86-97% of radiolabeled PS. The accessibility of exogenous lipids to extraction is uniformly consistent with the transbilayer lipid distribution inferred from cell shape changes, indicating that red cell morphology is an accurate and sensitive reporter of the transbilayer partitioning of incorporated exogenous phospholipids.
Skip Nav Destination
Article navigation
1 April 1989
Article|
April 01 1989
Erythrocyte morphology reflects the transbilayer distribution of incorporated phospholipids.
D L Daleke,
D L Daleke
Department of Chemistry, Stanford University, California 94305.
Search for other works by this author on:
W H Huestis
W H Huestis
Department of Chemistry, Stanford University, California 94305.
Search for other works by this author on:
D L Daleke
Department of Chemistry, Stanford University, California 94305.
W H Huestis
Department of Chemistry, Stanford University, California 94305.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1989) 108 (4): 1375–1385.
Citation
D L Daleke, W H Huestis; Erythrocyte morphology reflects the transbilayer distribution of incorporated phospholipids.. J Cell Biol 1 April 1989; 108 (4): 1375–1385. doi: https://doi.org/10.1083/jcb.108.4.1375
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement