The axonal transport of the diverse isotubulins in the motor axons of the rat sciatic nerve was studied by two-dimensional polyacrylamide gel electrophoresis after intraspinal injection of [35S]methionine. 3 wk after injection, the nerve segments carrying the labeled axonal proteins of the slow components a (SCa) and b (SCb) of axonal transport were homogenized in a cytoskeleton-stabilizing buffer and two distinct fractions, cytoskeletal (pellet, insoluble) and soluble (supernatant), were obtained by centrifugation. About two-thirds of the transported-labeled tubulin moved with SCa, the remainder with SCb. In both waves, tubulin was found to be associated mainly with the cytoskeletal fraction. The same isoforms of tubulin were transported with SCa and SCb; however, the level of a neuron-specific beta-tubulin subcomponent, termed beta', composed of two related isotubulins beta'1 and beta'2, was significantly greater in SCb than in SCa, relative to the other tubulin isoforms. In addition, certain specific isotubulins were unequally distributed between the cytoskeletal and the soluble fractions. In SCa as well as in SCb, alpha''-isotubulins were completely soluble in the motor axons. By contrast, alpha''' and beta'2-isotubulins, both posttranslationally modified isoforms, were always recovered in the cytoskeletal fraction and thus may represent isotubulins restricted to microtubule polymers. The different distribution of isotubulins suggests that a recruitment of tubulin isoforms, including specific posttranslational modifications of defined isoforms (such as, at least, phosphorylation of beta' and acetylation of alpha'), might be involved in the assembly of distinct subsets of axonal microtubules displaying differential properties of stability, velocity and perhaps of function.

This content is only available as a PDF.
You do not currently have access to this content.