The architecture of the junctional sarcoplasmic reticulum (SR) and transverse tubule (T tubule) membranes and the morphology of the two major proteins isolated from these membranes, the ryanodine receptor (or foot protein) and the dihydropyridine receptor, have been examined in detail. Evidence for a direct interaction between the foot protein and a protein component of the junctional T tubule membrane is presented. Comparisons between freeze-fracture images of the junctional SR and rotary-shadowed images of isolated triads and of the isolated foot protein, show that the foot protein has two domains. One is the large hydrophilic foot which spans the junctional gap and is composed of four subunits. The other is a hydrophobic domain which presumably forms the SR Ca2+-release channel and which also has a fourfold symmetry. Freeze-fracture images of the junctional T tubule membranes demonstrate the presence of diamond-shaped clusters of particles that correspond exactly in position to the subunits of the feet protein. These results suggest the presence of a large junctional complex spanning the two junctional membranes and intervening gap. This junctional complex is an ideal candidate for a mechanical coupling hypothesis of excitation-contraction coupling at the triadic junction.
Skip Nav Destination
Article navigation
1 December 1988
Article|
December 01 1988
Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle.
B A Block,
B A Block
Department of Biology, University of Pennsylvania, Philadelphia 19104.
Search for other works by this author on:
T Imagawa,
T Imagawa
Department of Biology, University of Pennsylvania, Philadelphia 19104.
Search for other works by this author on:
K P Campbell,
K P Campbell
Department of Biology, University of Pennsylvania, Philadelphia 19104.
Search for other works by this author on:
C Franzini-Armstrong
C Franzini-Armstrong
Department of Biology, University of Pennsylvania, Philadelphia 19104.
Search for other works by this author on:
B A Block
Department of Biology, University of Pennsylvania, Philadelphia 19104.
T Imagawa
Department of Biology, University of Pennsylvania, Philadelphia 19104.
K P Campbell
Department of Biology, University of Pennsylvania, Philadelphia 19104.
C Franzini-Armstrong
Department of Biology, University of Pennsylvania, Philadelphia 19104.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1988) 107 (6): 2587–2600.
Citation
B A Block, T Imagawa, K P Campbell, C Franzini-Armstrong; Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle.. J Cell Biol 1 December 1988; 107 (6): 2587–2600. doi: https://doi.org/10.1083/jcb.107.6.2587
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement