To investigate the function of calmodulin (CaM) in the mitotic apparatus, the effect of microinjected CaM and chemically modified CaMs on nocodazole-induced depolymerization of spindle microtubules was examined. When metaphase PtK1 cells were microinjected with CaM or a CaM-TRITC conjugate, kinetochore microtubules (kMTs) were protected from the effect of nocodazole. The ability of microinjected CaM to subsequently protect kMTs from the depolymerizing effect of nocodazole was dose dependent, and was effective for approximately 45 min, with protection decreasing if nocodazole treatment was delayed for more than 60 min after injection of CaM. The CaM-TRITC conjugate, similar to native CaM, displayed the ability to activate bovine brain CaM-dependent adenylate cyclase in a Ca++-dependent manner and showed a Ca++-dependent mobility shift when subjected to PAGE. A heat-altered CaM-TRITC conjugate also protected kMTs from the effect of nocodazole. However, this modified CaM was not able to activate adenylate cyclase nor did it display a Ca++-dependent mobility shift when electrophoresed. In a permeabilized cell model system, both CaM analogs were observed to bind to the spindle in a Ca++-independent manner. In contrast, a performic acid-oxidized CaM did not have a protective effect on spindle structure when microinjected into metaphase cells before nocodazole treatment. The oxidized CaM did not activate adenylate cyclase and did not exhibit Ca++-dependent mobility on polyacrylamide gels. These results are interpreted as supporting the hypothesis that CaM binds to the mitotic spindle in a Ca++-independent manner and that CaM may serve in the spindle, at least in part, to stabilize kMTs.
Skip Nav Destination
Article navigation
1 December 1988
Article|
December 01 1988
Calmodulin stabilization of kinetochore microtubule structure to the effect of nocodazole.
S C Sweet,
S C Sweet
Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109-0616.
Search for other works by this author on:
C M Rogers,
C M Rogers
Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109-0616.
Search for other works by this author on:
M J Welsh
M J Welsh
Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109-0616.
Search for other works by this author on:
S C Sweet
Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109-0616.
C M Rogers
Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109-0616.
M J Welsh
Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109-0616.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1988) 107 (6): 2243–2251.
Citation
S C Sweet, C M Rogers, M J Welsh; Calmodulin stabilization of kinetochore microtubule structure to the effect of nocodazole.. J Cell Biol 1 December 1988; 107 (6): 2243–2251. doi: https://doi.org/10.1083/jcb.107.6.2243
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement