Using digitally analyzed fluorescence videomicroscopy, we have examined the behavior of acetylcholine receptors and concanavalin A binding sites in response to externally applied electric fields. The distributions of these molecules on cultured Xenopus myoballs were used to test a simple model which assumes that electrophoresis and diffusion are the only important processes involved. The model describes the distribution of concanavalin A sites quite well over a fourfold range of electric field strengths; the results suggest an average diffusion constant of approximately 2.3 X 10(-9) cm2/s. At higher electric field strengths, the asymmetry seen is substantially less than that predicted by the model. Acetylcholine receptors subjected to electric fields show distributions substantially different from those predicted on the basis of simple electrophoresis and diffusion, and evidence a marked tendency to aggregate. Our results suggest that this aggregation is due to lateral migration of surface acetylcholine receptors, and is dependent on surface interactions, rather than the rearrangement of microfilaments or microtubules. The data are consistent with a diffusion-trap mechanism of receptor aggregation, and suggest that the event triggering receptor localization is a local increase in the concentration of acetylcholine receptors, or the electrophoretic concentration of some other molecular species. These observations suggest that, whatever mechanism(s) trigger initial clustering events in vivo, the accumulation of acetylcholine receptors can be substantially enhanced by passive, diffusion-mediated aggregation.
Skip Nav Destination
Article navigation
1 October 1988
Article|
October 01 1988
Acetylcholine receptors and concanavalin A-binding sites on cultured Xenopus muscle cells: electrophoresis, diffusion, and aggregation.
J Stollberg,
J Stollberg
Department of Physiology and Biophysics, College of Medicine, University of California, Irvine 92717.
Search for other works by this author on:
S E Fraser
S E Fraser
Department of Physiology and Biophysics, College of Medicine, University of California, Irvine 92717.
Search for other works by this author on:
J Stollberg
Department of Physiology and Biophysics, College of Medicine, University of California, Irvine 92717.
S E Fraser
Department of Physiology and Biophysics, College of Medicine, University of California, Irvine 92717.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1988) 107 (4): 1397–1408.
Connected Content
Corrected article
Correction
Citation
J Stollberg, S E Fraser; Acetylcholine receptors and concanavalin A-binding sites on cultured Xenopus muscle cells: electrophoresis, diffusion, and aggregation.. J Cell Biol 1 October 1988; 107 (4): 1397–1408. doi: https://doi.org/10.1083/jcb.107.4.1397
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Connected Content
Advertisement
Advertisement