SEC12, a gene that is required for secretory, membrane, and vacuolar proteins to be transported from the endoplasmic reticulum to the Golgi apparatus, has been cloned from a genomic library by complementation of a sec12 ts mutation. Genetic analysis has shown that the cloned gene integrates at the SEC12 locus and that a null mutation at the locus is lethal. The DNA sequence predicts a protein of 471 amino acids containing a hydrophobic stretch of 19 amino acids near the COOH terminus. To characterize the gene product (Sec12p) in detail, a lacZ-SEC12 gene fusion has been constructed and a polyclonal antibody raised against the hybrid protein. The antibody recognizes Sec12p as a approximately 70-kD protein that sediments in a mixed membrane fraction that includes endoplasmic reticulum. Sec12p is not removed from the membrane fraction by treatment at high pH and high salt and is not degraded by exogenous protease unless detergent is present. Glycosylation of Sec12p during biogenesis is indicated by an electrophoretic mobility shift of the protein that is influenced by tunicamycin and by imposition of an independent secretory pathway block. We suggest that Sec12p is an integral membrane glycoprotein with a prominent domain that faces the cytoplasm where it functions to promote protein transport to the Golgi apparatus. In the process of transport, Sec12p itself may migrate to the Golgi apparatus and function in subsequent transport events.

This content is only available as a PDF.
You do not currently have access to this content.