Using immunohistochemical methods, we have investigated the role of transforming growth factor-beta (TGF-beta) in the development of the mouse embryo. For detection of TGF-beta in 11-18-d-old embryos, we have used a polyclonal antibody specific for TGF-beta type 1 and the peroxidase-antiperoxidase technique. Staining of TGF-beta is closely associated with mesenchyme per se or with tissues derived from mesenchyme, such as connective tissue, cartilage, and bone. TGF-beta is conspicuous in tissues derived from neural crest mesenchyme, such as the palate, larynx, facial mesenchyme, nasal sinuses, meninges, and teeth. Staining of all of these tissues is greatest during periods of morphogenesis. In many instances, intense staining is seen in mesenchyme when critical interactions with adjacent epithelium occur, as in the development of hair follicles, teeth, and the submandibular gland. Marked staining is also seen when remodeling of mesenchyme or mesoderm occurs, as during formation of digits from limb buds, formation of the palate, and formation of the heart valves. The presence of TGF-beta is often coupled with pronounced angiogenic activity. The histochemical results are discussed in terms of the known biochemical actions of TGF-beta, especially its ability to control both synthesis and degradation of both structural and adhesion molecules of the extracellular matrix.

This content is only available as a PDF.
You do not currently have access to this content.