The ATP2 gene of Saccharomyces cerevisiae codes for the cytoplasmically synthesized beta-subunit protein of the mitochondrial F1-ATPase. To define the amino acid sequence determinants necessary for the in vivo targeting and import of this protein into mitochondria, we have constructed gene fusions between the ATP2 gene and either the Escherichia coli lacZ gene or the S. cerevisiae SUC2 gene (which codes for invertase). The ATP2-lacZ and ATP2-SUC2 gene fusions code for hybrid proteins that are efficiently targeted to yeast mitochondria in vivo. The mitochondrially associated hybrid proteins fractionate with the inner mitochondrial membrane and are resistant to proteinase digestion in the isolated organelle. Results obtained with the gene fusions and with targeting-defective ATP2 deletion mutants provide evidence that the amino-terminal 27 amino acids of the beta-subunit protein precursor are sufficient to direct both specific sorting of this protein to yeast mitochondria and its import into the organelle. Also, we have observed that certain of the mitochondrially associated Atp2-LacZ and Atp2-Suc2 hybrid proteins confer a novel respiration-defective phenotype to yeast cells.
Skip Nav Destination
Article navigation
1 February 1986
Article|
February 01 1986
The amino terminus of the yeast F1-ATPase beta-subunit precursor functions as a mitochondrial import signal.
S D Emr
A Vassarotti
J Garrett
B L Geller
M Takeda
M G Douglas
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1986) 102 (2): 523–533.
Citation
S D Emr, A Vassarotti, J Garrett, B L Geller, M Takeda, M G Douglas; The amino terminus of the yeast F1-ATPase beta-subunit precursor functions as a mitochondrial import signal.. J Cell Biol 1 February 1986; 102 (2): 523–533. doi: https://doi.org/10.1083/jcb.102.2.523
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement