This article describes a new freeze-fracture autoradiographic technique for the detection of radioactive ligands associated with the surface of cells in monolayer or suspension culture. Since freeze-fracture replicas are produced in the conventional way, all membrane features normally seen in freeze-fracture are retained, and autoradiographic grains produced by the labeled ligands are seen superimposed on unaltered exoplasmic membrane fracture faces. To assess the feasibility and resolution of this technique, we compared the surface distribution of alpha 2-macroglobulin and cholera toxin, labeled either with 125I or with colloidal gold, on 3T3-L1 fibroblasts. Both by autoradiography and cytochemical gold labeling, alpha 2-macroglobulin was associated specifically with coated pits, whereas cholera toxin was preferentially found over smaller, apparently non-coated membrane invaginations. Together with data on the surface localization of 125I-transferrin on HL-60 myelomonocytic cells, these results demonstrate the application of this technique for the accurate determination of ligand distribution over large areas of plasma membrane. The simplicity and reproducibility of the method should now allow freeze-fracture autoradiography to become a standard technique for investigating the distribution of both endogenous and exogenous cell surface-associated molecules, as well as the redistribution of such molecules under different experimental conditions.
Skip Nav Destination
Article navigation
1 September 1985
Article|
September 01 1985
Detection of surface-bound ligands by freeze-fracture autoradiography.
J L Carpentier
D Brown
B Iacopetta
L Orci
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1985) 101 (3): 887–890.
Citation
J L Carpentier, D Brown, B Iacopetta, L Orci; Detection of surface-bound ligands by freeze-fracture autoradiography.. J Cell Biol 1 September 1985; 101 (3): 887–890. doi: https://doi.org/10.1083/jcb.101.3.887
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement