The source and sinks for the intracellular calcium released during fertilization were examined in single eggs from the sea urchin, Arbacia punctulata. Single eggs were microinjected with the calcium photoprotein, aequorin. The calcium-aequorin luminescence was measured with a microscope-photomultiplier or observed with a microscope-image intensifier-video system. In the normal egg a propagated release has been observed. The source of the calcium was investigated in the organelle-stratified centrifuged egg and by the use of mitochondrial uncouplers. In the organelle-stratified centrifuged egg, the calcium-aequorin luminescence was found to originate from the clear zone. The principal constituent of the clear zone is the endoplasmic reticulum. Other potential sources of calcium are the mitochondria. Their contribution to the calcium transient was investigated by exposure of aequorin-injected eggs to mitochondrial uncouplers either before or after fertilization. There was no calcium released from the mitochondria before fertilization. A very large calcium store was released from the mitochondria after fertilization. Interestingly, eggs fertilized in the presence of uncouplers showed no increase in the calcium-aequorin luminescence over untreated eggs. Apparently, in the absence of mitochondrial uptake, other sinks for calcium with affinity and capacity similar to the mitochondria exist, but their nature is unknown. We suggest that the endoplasmic reticulum is the source of the intracellular calcium released upon fertilization and that the mitochondria are the principal sink. The results are discussed with regard to the metabolic activation of the egg.

This content is only available as a PDF.
You do not currently have access to this content.