

THE YEAR IN CELL BIOLOGY 2025

Editor-In-Chief

Jodi Nunnari

Executive Editor

Tim Spencer email: tspencer@rockefeller.edu

Editors

Arshad Desai Pier Paolo Di Fiore Elaine Fuchs Anna Huttenlocher

Ian Macara Ira Mellman Liz Miller

Louis F. Reichardt Kenneth M. Yamada Richard Youle Hong Zhang

Deputy and Reviews Editor

Andrea Marat

email: amarat@rockefeller.edu

Scientific Editors

Therese Gerbich

email: tgerbich@rockefeller.edu

Dan Simon

email: dsimon01@rockefeller.edu

Gabriele Stephan

email: gstephan@rockefeller.edu

Managing Editor

Lindsev Hollander

email: jcellbiol@rockefeller.edu

Editorial Board

John Aitchison
Anna Akhmanova
Gregory Alushin
Johan Auwerx
Manuela Baccarini
Tamas Balla
Maureen Barr
Bill Bement
Anne Bertolotti
Monica Bettencourt-Dias
Joerg Bewersdorf

Joerg Bewersdorf
Magdalena Bezanilla
Cédric Blanpain
Federica Brandizzi
Julius Brennecke
Marianne Bronner
Tamara Caspary
Valérie Castellani
Daniela Cimini
Don W. Cleveland
Nika Danial
William Earnshaw
Jan Ellenberg
Anne Ephrussi
Cagla Eroglu
Jeffrey Esko

Sandrine Etienne-Manneville

Andrew Ewald Marc Freeman Judith Frydman Hironori Funabiki Melissa Gardner Larry Gerace Erin Golev Bruce Goode Yukiko Gotoh Roger Greenberg Ulrich Hartl Martin Hetzer Tatsuya Hirano Erika Holzbaur Martin Humphries Fumiyo Ikeda Luisa Iruela-Arispe Johanna Ivaska Tarun Kapoor

Gerard Karsenty
Alexey Khodjakov
Hiroshi Kimura
Jürgen Knoblich
Alberto R. Kornblihtt
Ulrike Kutay
Laura Lackner
Thomas Langer
Pekka Lappalainen

Ana Maria Lennon-Dumenil

Michael Lazarou

Andres Leschziner
Christophe Leterrier
Danny Lew
Jens Lykke-Andersen
Vivek Malhotra
Brendan Manning
Satyajit Mayor
Tobias Meyer
Alex Mogilner
Sean Munro
Maxence Nachury
Karla Neugebauer
Carien Niessen
Eva Nogales

James Olzmann Kassandra Ori-McKenney

Karen Oegema

Marisa Otegui Mark Peifer Elior Peles Tatiana Petrova Gaia Pigino Ana Pombo Will Prinz Thomas Rando Samara Reck-Peterson Karin Reinisch Michael Rout Craig Roy Michael Rudnicki Erik Sahai Martin Schwartz Shu-ou Shan Andrey Shaw Zu-Hang Sheng

Agata Smogorzewska Harald Stenmark Jennifer Stow Aaron Straight Lloyd Trotman Billy Tsai

Elçin Ünal
Christian Ungermann
Bas van Steensel
Patrik Verstreken
Mark von Zastrow
Erwin Wagner
Tobias Walther
Xiaochen Wang
Lois Weisman
Sara Wickström
Min Wu
Chonglin Yang
Hongyuan Yang
Tamotsu Yoshimori

Li Yu Xiang Yu Marino Zerial Yan Zhao Yixian Zheng Bo Zhong

Early Career Advisory Board

Ori Avinoam Lindsay Case Gautam Dey Stephanie Ellis Elif Nur Firat-Karalar Ionathan Friedman Meng-meng Fu Yaming Jiu Anjali Kusumbe Binyam Mogessie Pablo Lara-Gonzalez Andrew Muroyama Sonya Neal Masayuki Onishi Daniel Rios Barrera Samantha Stehbens

Senior Preflight Editor

Laura Smith

Preflight Editor

Rochelle Ritacco

Senior Production Editor

Samantha Wolner

Senior Production Manager

Camille Clowery

Production Designer

Erinn A. Grady

Copyright to articles published in this journal is held by the authors. Articles are published by Rockefeller University Press under license from the authors. Conditions for reuse of the articles by third parties are listed at http://www.rupress.org/pages/terms.

Print ISSN: 0021-9525. Online ISSN: 1540-8140

Rockefeller University Press

THE YEAR IN CELL BIOLOGY 2025

The editorial team at the *Journal of Cell Biology (JCB)* is excited to present a collection of the year's most impactful papers, which have garnered exceptional interest from our readership.

The collection features new advances in plasma membrane repair, autophagy, protein homeostasis, and organelle-dependent cell signaling. It explores mechanisms underlying the phagocytic fate of epithelial cells as well as the interplay between lysosomal exocytosis and focal adhesions. It presents a new meiosis-specific organelle and introduces valuable resources such as a proteome-wide yeast degron library. Additional highlights include discoveries on how sphingolipid metabolism regulates stem cell homeostasis and how mitochondrial dynamics affect astrocyte morphogenesis. Find more Year in Cell Biology articles and selections beyond what's covered in this magazine at rupress.org/jcb/collections.

JCB is proud to continue publishing high-quality research. We are grateful that scientists regard our journal as a leading venue for their groundbreaking discoveries as well as for our reviewers' and readers' support and enthusiasm. We reflect on a year of cutting-edge findings spanning the diverse spectrum of cell biology and look forward to a new year of transformative research ahead.

TABLE OF CONTENTS

4 Secretion of microvesicles during membrane repair Justin Krish Williams... Randy Schekman

Identification of organelle-specific autophagy regulators Truc T. Losier... Maxime W.C. Rousseaux, Ryan C. Russell

5 A signaling pathway linking lysosome perturbation to LRRK2 activation

Amanda Bentley-DeSousa... Shawn M. Ferguson

The architecture of cytoplasmic ribosomes on mitochondrial membranes

Ya-Ting Chang... Danielle A. Grotjahn

6 Ecdysone promotes nonprofessional phagocytic cell fate Gaurab Ghosh... Mohit Prasad

A proteome-wide yeast degron library for "on-demand" protein depletion

Rosario Valenti, Yotam David... Maya Schuldiner

7 Sphingolipids control the hair follicle stem cell compartment Franziska Peters... Sara A. Wickström

Drp1 controls astrocyte morphology and organizationMaria Pia Rodriguez Salazar... Cagla Eroglu

8 Focal adhesion maturation promotes lysosomal exocytosis Wei-Wei Ren... Morihisa Fujita

An interkinetic envelope is assembled during oocyte meiosis Layla El Mossadeq... Julien Dumont

Secretion of microvesicles during membrane repair

Microvesicles (MVs) are membrane-enclosed, plasma membrane-derived particles released by cells from all branches of life. MVs have utility as disease biomarkers and may participate in intercellular communication; however, physiological processes that induce their secretion are not known.

Here, we isolate and characterize annexin-containing MVs and show that these vesicles are secreted in response to the calcium influx caused by membrane damage. The annexins in these vesicles are cleaved by calpains. After plasma membrane injury, cytoplasmic calcium-bound annexins are rapidly recruited to the plasma membrane and

form a scab-like structure at the lesion. In a second phase, recruited annexins are cleaved by calpains-1/2, disabling membrane scabbing. Cleavage promotes annexin secretion within MVs.

Our data support a new model of plasma membrane repair, where calpains relax annexin-membrane aggregates in the lesion repair scab, allowing secretion of damaged membrane and annexins as MVs. We anticipate that cells experiencing plasma membrane damage, including muscle and metastatic cancer cells, secrete these MVs at elevated levels.

RESEARCHER DETAILS

Justin Krish Williams (left)

Graduate student
University of California, Berkeley
(Currently a Postdoctoral Fellow at Memorial Sloan
Kettering Cancer Center)

Randy Schekman (right)

University of California, Berkeley schekman@berkeley.edu

ORIGINAL PAPER

Williams, J.K., J.M. Ngo, A. Murugupandiyan, D.E. Croall, H.C. Hartzell, and R. Schekman. 2025. Calpains orchestrate secretion of annexin-containing microvesicles during membrane repair. *J. Cell Biol.* 224 (7): e202408159. https://doi.org/10.1083/jcb.202408159

Identification of organelle-specific autophagy regulators

Autophagy is a conserved degradative process that promotes cellular homeostasis under stress conditions. Under nutrient starvation, autophagy is nonselective, promoting indiscriminate breakdown of cytosolic components. Conversely, selective autophagy is responsible for the specific turnover of damaged organelles. We hypothesized that selective autophagy may be regulated by signaling pathways distinct from those controlling starvation-induced autophagy, thereby promoting organelle turnover.

To address this question, we conducted kinome-wide CRISPR screens to identify distinct signaling pathways responsible for the regulation of basal

autophagy, starvation-induced autophagy, and two types of selective autophagy: ER-phagy and pexophagy. These parallel screens identified both known and novel autophagy regulators, some common to all conditions and others specific to selective autophagy. More specifically, CDK11A and NME3 were further characterized to be selective ER-phagy regulators. Meanwhile, PAN3 and CDC42BPG were identified as an activator and inhibitor of pexophagy, respectively.

Collectively, these datasets provide the first comparative description of the kinase signaling that defines the regulation of selective autophagy and bulk autophagy.

RESEARCHER DETAILS

Truc T. Losier
PhD student
University of Ottawa
(Currently a Scientist at Lunella
Biotech Inc.)

Maxime W.C. Rousseaux Associate Professor University of Ottawa max.rousseaux@uottawa.ca

Ryan C. Russell
Associate Professor
University of Ottawa
ryan.russell@uottawa.ca

ORIGINAL PAPER

Losier, T.T., K.E. King, M.W.C. Rousseaux, and R.C. Russell. 2025. Identification of organelle-specific autophagy regulators from tandem CRISPR screens. *J. Cell Biol.* 224 (10): e202405138. https://doi.org/10.1083/jcb.202405138

A signaling pathway linking lysosome perturbation to LRRK2 activation

Mutations that increase LRRK2 kinase activity have been linked to Parkinson's disease and Crohn's disease. LRRK2 is also activated by lysosome damage. However, the endogenous cellular mechanisms that control LRRK2 kinase activity are not well understood.

In this study, we identify signaling through stimulator of interferon genes (STING) as an activator of LRRK2 via the conjugation of ATG8 to single membranes (CASM) pathway. We furthermore establish that multiple chemical stimuli that perturb lysosomal homeostasis also converge on CASM to activate LRRK2. Although CASM re-

sults in the lipidation of multiple ATG8 protein family members, we establish that LRRK2 lysosome recruitment and kinase activation are highly dependent on interactions with the GABARAP member of this family.

Collectively, these results define a pathway that integrates multiple stimuli at lysosomes to control the kinase activity of LRRK2. Aberrant activation of LRRK2 via this pathway may be of relevance in both Parkinson's and Crohn's diseases.

RESEARCHER DETAILS

Amanda Bentley-DeSousa (left)
Postdoctoral Associate
Yale University School of Medicine

Shawn M. Ferguson (right) Professor Yale University School of Medicine shawn.ferguson@yale.edu

ORIGINAL PAPER

membranes

Bentley-DeSousa, A., A. Roczniak-Ferguson, and S.M. Ferguson. 2025. A STING-CASM-GABARAP pathway activates LRRK2 at lysosomes. *J. Cell Biol.* 224 (2): e202310150. https://doi.org/10.1083/jcb.202310150

The architecture of cytoplasmic ribosomes on mitochondrial

Most of the mitochondria proteome is nuclear encoded, synthesized by cytoplasmic ribosomes, and targeted to the mitochondria posttranslationally. However, a subset of mitochondrial-targeted proteins is imported co-translationally, although the molecular mechanisms governing this process remain unclear.

We employ cellular cryo-electron tomography to visualize interactions between cytoplasmic ribosomes and mitochondria in *Saccharomyces cerevisiae*. We use surface morphometrics tools to identify a subset of ribosomes optimally oriented on mitochondrial membranes for protein import. This allows us to establish the first subtomogram average struc-

ture of a cytoplasmic ribosome at the mitochondrial surface in the native cellular context, which showed three distinct connections with the outer mitochondrial membrane surrounding the peptide exit tunnel. Further, this analysis demonstrated that cytoplasmic ribosomes primed for mitochondrial protein import cluster on the outer mitochondrial membrane at sites of local constrictions of the outer and inner mitochondrial membranes.

Overall, our study reveals the architecture and the spatial organization of cytoplasmic ribosomes at the mitochondrial surface, providing a native cellular context to define the mechanisms that mediate efficient mitochondrial co-translational protein import.

RESEARCHER DETAILS

Ya-Ting (Atty) Chang (left)
Graduate student
The Scripps Research Institute

Danielle A. Grotjahn (right) Associate Professor The Scripps Research Institute grotjahn@scripps.edu

ORIGINAL PAPER

Chang, Y.-T., B.A. Barad, J. Hamid, H. Rahmani, B.M. Zid, and D.A. Grotjahn. 2025. Cytoplasmic ribosomes on mitochondria alter the local membrane environment for protein import. *J. Cell Biol.* 224 (4): e202407110. https://doi.org/10.1083/jcb.202407110

Ecdysone promotes nonprofessional phagocytic cell fate

Acquisition of nonprofessional phagocytic cell fate plays an important role in sculpting functional metazoan organs and maintaining overall tissue homeostasis. Though physiologically highly relevant, how the normal epithelial cells acquire phagocytic fate is still mostly unclear.

We have employed the *Drosophila* ovary model to demonstrate that classical ecdysone signaling in the somatic epithelial follicle cells (AFCs) aids the removal of germline nurse cells (NCs) in late oogenesis. Our live-cell imaging data reveal a novel phenomenon wherein collective behavior of 4–5 AFCs is required for clearing a

single NC. By employing classical genetics, molecular biology, and yeast one-hybrid assay, we demonstrate that ecdysone modulates the phagocytic disposition of AFCs at two levels. It regulates the epithelial–mesenchymal transition of the AFCs through Serpent and modulates the phagocytic behavior of the AFCs through Croquemort and Draper.

Our data provide unprecedented novel molecular insights into how ecdysone signaling reprograms AFCs toward a phagocytic fate.

RESEARCHER DETAILS

Gaurab Ghosh
PhD Student
CSIR-Senior Research Fellow
Indian Institute of Science Education
and Research-Kolkata

Mohit Prasad
Professor
Indian Institute of Science Education
and Research-Kolkata
mohitprasad@iiserkol.ac.in

ORIGINAL PAPER

Ghosh, G., D. Das, A. Nandi, S. De, S.N. Gangappa, and M. Prasad. 2025. Ecdysone regulates phagocytic cell fate of epithelial cells in developing *Drosophila* eggs. *J. Cell Biol.* 224 (8): e202411073. https://doi.org/10.1083/jcb.202411073

A proteome-wide yeast degron library for "on-demand" protein depletion

Genome-wide collections of yeast strains, known as libraries, revolutionized the way systematic studies are carried out. Specifically, libraries that involve a cellular perturbation, such as the deletion collection, have facilitated key biological discoveries. However, short-term rewiring and long-term accumulation of suppressor mutations often obscure the functional consequences of such perturbations.

We present the AID library, which supplies "on demand" protein depletion to overcome these limitations. Here, each protein is tagged with a green fluorescent protein (GFP) and an auxin-inducible degron (AID), enabling rapid protein depletion that can be quantified systematically using the GFP element.

We characterized the degradation response of all strains and demonstrated its utility by revisiting seminal yeast screens for genes involved in cell cycle progression as well as mitochondrial distribution and morphology. In addition to recapitulating known phenotypes, we also uncovered proteins with previously unrecognized roles in these central processes.

Hence, our tool expands our knowledge of cellular biology and physiology by enabling access to phenotypes that are central to cellular physiology and therefore rapidly equilibrated.

RESEARCHER DETAILS

Rosario Valenti (left)
Graduate student
Weizmann Institute of Science

Maya Schuldiner (center)

Professor
Weizmann Institute of Science
maya.schuldiner@weizmann.ac.il

Yotam David (right)
Graduate student
Weizmann Institute of Science

Photo credit: Ohad Herches, Weizmann Institute of Science Photography Department

ORIGINAL PAPER

Valenti, R., Y. David, D. Edilbi, B. Dubreuil, A. Boshnakovska, Y. Asraf, T.-M. Salame, E. Sass, P. Rehling, and M. Schuldiner. 2025. A proteome-wide yeast degron collection for the dynamic study of protein function. J. Cell Biol. 224 (2): e202409050. https://doi.org/10.1083/jcb.202409050

Sphingolipids control the hair follicle stem cell compartment

Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what their functional significance in tissue morphogenesis and maintenance is has remained unclear.

Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis. Deletion of CerS4 prevents the proper development of the adult hair follicle bulge stem cell (HFSC) compartment due to altered differentiation trajectories. Mechanistically,

HFSC differentiation defects arise from an imbalance of key ceramides and their derivate sphingolipids, resulting in hyperactivation of noncanonical Wnt signaling. This impaired HFSC compartment establishment leads to disruption of hair follicle architecture and skin barrier function, ultimately triggering a T helper cell 2-dominated immune infiltration resembling human atopic dermatitis.

This work uncovers a fundamental role for a cell state-specific sphingolipid profile in stem cell homeostasis and in maintaining an intact skin barrier.

RESEARCHER DETAILS

Sara A. Wickström (left)

Director Max Planck Institute for Molecular Biomedicine Research Director, University of Helsinki sara.wickstrom@mpi-muenster.mpg.de

Franziska Peters (right)

Postdoctoral researcher University of Helsinki and Max Planck Institute for Molecular Biomedicine anna.peters@uk.bonn.de

Photo credit: MPI-MBM

ORIGINAL PAPER

Peters, F., W. Höfs, H. Lee, S. Brodesser, K. Kruse, H.C.A. Drexler, J. Hu, V.K. Raker, D. Lukas, E. von Stebut, M. Krönke, C.M. Niessen, and S.A. Wickström. 2025. Sphingolipid metabolism orchestrates establishment of the hair follicle stem cell compartment. J. Cell Biol. 224 (4): e202403083. https://doi.org/10.1083/jcb.202403083

Drp1 controls astrocyte morphology and organization

Dysfunctional mitochondrial dynamics are a hallmark of devastating neurodevelopmental disorders such as childhood refractory epilepsy. However, the role of glial mitochondria in proper brain development is not well understood.

We show that astrocyte mitochondria undergo extensive fission while populating astrocyte distal branches during postnatal cortical development. Loss of mitochondrial fission regulator, dynamin-related protein 1 (Drp1), decreases mitochondrial localization to distal astrocyte processes, and this mitochondrial mislocalization reduces astrocyte morphological complexity. Functionally, astrocyte-specific conditional deletion of Drp1 induces astrocyte reactivity and disrupts astrocyte organization in the cortex. These morphological and organizational deficits are accompanied by loss of perisynaptic astrocyte process proteins such as gap junction protein connexin 43.

These findings uncover a crucial role for mitochondrial fission in coordinating astrocytic morphogenesis and organization, revealing the regulation of astrocytic mitochondrial dynamics as a critical step in neurodevelopment.

RESEARCHER DETAILS

Maria Pia Rodriguez Salazar PhD student **Duke University Medical Center**

Cagla Eroglu **Duke University Medical Center** cagla.eroglu@duke.edu

ORIGINAL PAPER

Rodriguez Salazar, M.P., S. Kolanukuduru, V. Ramirez, B. Lyu, G. Manigault, G. Sejourne, H. Sesaki, G. Yu, and C. Eroglu. 2025. Mitochondrial fission controls astrocyte morphogenesis and organization in the cortex. J. Cell Biol. 224 (10): e202410130. https://doi.org/10.1083/jcb.202410130

Focal adhesion maturation promotes lysosomal exocytosis

Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated *N*-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism.

In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis. Interestingly, lysosomal exocytosis preferentially occurred in the vicinity of focal adhesions, protein complexes connecting the actin cytoskeleton to the extracellular matrix. Through genome-wide

knockout screening, we identified that MYO18B, an actin crosslinker, is required for focal adhesion maturation, facilitating lysosomal exocytosis and the release of paucimannosidic lysosomal proteins to the extracellular milieu. Moreover, a mechanosensitive cation channel PIEZO1 locally activated at focal adhesions imports Ca²⁺ necessary for lysosome–plasma membrane fusion.

Collectively, our study unveiled an intimate relationship between lysosomal exocytosis and focal adhesion, shedding light on the unexpected interplay between lysosomal activities and cellular mechanosensing.

RESEARCHER DETAILS

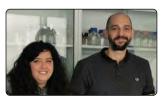
Wei-Wei Ren Graduate student Jiangnan University and Gifu University

Morihisa Fujita Professor Gifu University fujita.morihisa.h3@f.gifu-u.ac.jp

ORIGINAL PAPER

Ren, W.-W., R. Kawahara, K.G.N. Suzuki, P. Dipta, G. Yang, M. Thaysen-Andersen, and M. Fujita. 2025. MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation. *J. Cell Biol.* 224 (3): e202407068. https://doi.org/10.1083/jcb.202407068

An interkinetic envelope is assembled during oocyte meiosis


At the end of cell division, the nuclear envelope reassembles around the decondensing chromosomes. Female meiosis culminates in two consecutive cell divisions of the oocyte, meiosis I and II, which are separated by a brief transition phase known as interkinesis. Due to the absence of chromosome decondensation and the suppression of genome replication during interkinesis, it has been widely assumed that the nuclear envelope does not reassemble between meiosis I and II.

By analyzing interkinesis in *C. elegans* oocytes, we instead show that an atypical structure made of two lipid bilayers, which we termed the interkinetic envelope, surrounds the surface

of the segregating chromosomes. The interkinetic envelope shares common features with the nuclear envelope but also exhibits specific characteristics that distinguish it, including its lack of continuity with the endoplasmic reticulum, unique protein composition, assembly mechanism, and function in chromosome segregation.

These distinct attributes collectively define the interkinetic envelope as a unique and specialized structure that has been previously overlooked.

RESEARCHER DETAILS

Layla El Mossadeq (left) PhD student Institut Jacques Monod

Julien Dumont (right) Principal Investigator Institut Jacques Monod

julien.dumont@ijm.fr

ORIGINAL PAPER

El Mossadeq, L., L. Bellutti, R. Le Borgne, J.C. Canman, L. Pintard, J.-M. Verbavatz, P. Askjaer, and J. Dumont. 2025. An interkinetic envelope surrounds chromosomes between meiosis I and II in *C. elegans* oocytes. *J. Cell Biol.* 224 (3): e202403125. https://doi.org/10.1083/jcb.202403125

TOOLS FOR DISCOVERY

Journal of Cell Biology (JCB) publishes advances in any area of basic cell biology as well as applied cellular advances in fields such as cancer biology, immunology, neurobiology, stem cell biology, and metabolism. All editorial decisions on research manuscripts are made through collaborative consultation between professional editors with scientific training and academic editors who are active in the field. JCB was established in 1955.

Journal of Experimental Medicine (JEM) publishes papers providing novel conceptual insight into immunology, cancer biology, neuroscience, vascular biology, microbial pathogenesis, and stem cell biology. All editorial decisions are made by active scientists in conjunction with professional editors. JEM was established in 1896.

Journal of General Physiology (JGP) publishes mechanistic and quantitative cellular and molecular physiology of the highest quality; provides a best in class author experience; and nurtures future generations of researchers. All editorial decisions on research manuscripts are made through a collaborative consultation between the Editor-in-Chief and Associate Editors, all of whom are active scientists. JGP was established in 1918.

Journal of Human Immunity (JHI) is the community's first dedicated journal for research on human inborn errors of immunity (IEI) and is the official journal of the International Alliance for Primary Immunodeficiency Societies (IAPIDS). JHI publishes novel insights into the physiology and pathology of human immunity through the study of genetic defects and their phenocopies, including the study of leukocytes and other cells. JHI was established in 2025.

Life Science Alliance (LSA) is a global, open-access, editorially independent, and peer-reviewed journal launched in 2018 by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.

RUPRESS.ORG

WHY PUBLISH WITH ROCKEFELLER

WITH ROCKEFELLER UNIVERSITY PRESS JOURNALS?

Format Neutral

You may submit your papers in ANY format.

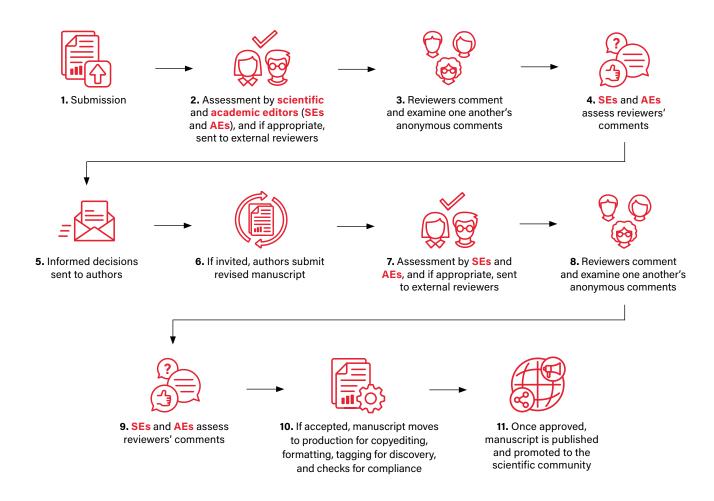
Transfer Policy

We welcome submissions that include reviewer comments from another journal.

Fair and Fast

Articles appear online one to two days after author proofs are returned.

INSTRUCTIONS FOR AUTHORS


Scan QR code with your phone

WHY PUBLISH IN JCB?

AN EDITORIAL PROCESS GUIDED BY YOUR COMMUNITY

At the *Journal of Cell Biology*, all editorial decisions on research manuscripts are made through collaborative consultation between professional scientific editors and the academic editorial board.

99% of invited revisions are accepted

28% of revisions are accepted without re-review

Rapid decisions on transfer manuscripts

*2024 Data

Format Neutral and Preprint Friendly

Authors can submit their papers in ANY format, and prior posting to a preprint server won't affect consideration.

Transfers Welcome

We welcome submissions that include reviewer comments from another journal and offer rapid decisions on transferred manuscripts.

Fair and Fast

We limit rounds of revision, and we strive to provide clear, detailed decisions that illustrate what is expected in the revisions. In 2024, 99% of invited revisions were accepted and 28% of revisions were accepted without re-review.

Open Access Available

Authors can choose Gold OA to make their articles immediately publicly available or Green OA to make them accessible to readers with a subscription and then publicly available 12 months after publication. Authors always retain copyright if allowed by their institution/funder.

EDITOR-IN-CHIEF

Jodi Nunnari

EXECUTIVE EDITOR

Tim Spencer

EDITORS

Arshad Desai Pier Paolo Di Fiore Elaine Fuchs Anna Huttenlocher Ian Macara Ira Mellman Liz Miller

Louis F. Reichardt Kenneth M. Yamada Richard Youle Hong Zhang

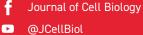
DEPUTY AND REVIEWS EDITOR

Andrea Marat

SCIENTIFIC EDITORS

Dan Simon Gabriele Stephan Therese Gerbich

MANAGING EDITOR


Lindsey Hollander

CONNECT WITH JCB


@jcb.org

icb.org

UNLIMITED OPEN ACCESS PUBLISHING AT NO COST TO AUTHORS.

When your library participates in a Read-and-Publish Agreement with Rockefeller University Press, you are entitled to:

READ:

Unlimited access to all content published in Journal of Cell Biology, Journal of Experimental Medicine, and Journal of General **Physiology** immediately after publication.

PUBLISH:

100% coverage of the JCB, JEM, and JGP Immediate Open Access fees when you serve as the primary corresponding author on any accepted manuscript. There is no limit to the number of articles that may be published as a part of the deal.

View current agreements:

Need more information?

subs@rockefeller.edu

+1 212-327-8590

