

THE YEAR IN CELL BIOLOGY 2020

ORCA-Fusion[®] BT

SEE WHAT YOU'VE BEEN MISSING

HAMAMATSU

PHOTON IS OUR BUSINESS

HAMAMATSUCAMERAS.COM

THE YEAR IN CELL BIOLOGY 2020

We are pleased to present this collection of exceptional research published over the course of the last year in the *Journal of Cell Biology (JCB)*. As always, our goal with this collection is to feature papers from across the breadth of cell biology and to highlight the articles that most captured the attention and interest of our readers. We therefore considered the number of times full-text articles were downloaded in the first three months after their initial publication when making our selection.

Although this collection cannot provide a full and comprehensive overview of all of the many exciting advances that have appeared in the pages of our journal, it does serve to offer a representative glimpse of the findings that our readers found most interesting this past year. From a study that demonstrates how cancer cells can "reprogram" natural killer cells to facilitate metastasis to work that reveals a role for optineurin and ATG9A in modulating ubiquitin-induced mitophagy, these articles showcase a fraction of the diversity of the *JCB* community. Furthermore, with articles that examine the mechanisms by which microtubules prevent cell rupture during amoeboid migration and the role of proteasome distribution in regulating the GABAergic response switch in neurons, this collection provides something for everyone in our diverse readership.

Needless to say, this year has been unlike any other in recent memory, and the COVID-19 pandemic has greatly affected every aspect of our lives, including the scientific community's ability to conduct research both safely and effectively. Despite this, the papers presented in this collection, as well as all of the work published over the past year, serve as a testament to the ingenuity, fortitude, and dedication of the cell biological community.

We are eternally grateful to the many people who make it possible for us to publish some of the very best cell biological studies in the world: our reviewers, who volunteer their time and energy throughout the year, to you, our readers, and most especially to our authors. It is truly our privilege to publish all of the papers you see in *JCB*. We thank you for continuing to submit your very best work to us.

We hope you enjoy reading this collection.

6 **A system to remove aberrant extracellular proteins**

The chaperone Clusterin works in combination with heparan sulfate proteoglycans to bring misfolded proteins into cells for degradation

Eisuke Itakura et al.

7 **ER contacts coordinate mitochondrial dynamics**

Mitochondrial fission and fusion machineries colocalize at ER membrane contact sites, where they can rapidly modulate mitochondrial morphology in response to metabolic cues

Robert G. Abrisch, Samantha C. Gumbin ... Gia K. Voeltz

8 **VPS13 forms a lipid channel between membranes**

Cryo-EM of VPS13 N-terminal fragment reveals a hydrophobic groove that may allow bulk lipid flow between organelles

PeiQi Li ... Karin M. Reinisch

9 **Autophagy targets nuclear pore complexes**

Several different pathways selectively target NPCs and nucleoporins for autophagic degradation upon inactivation of the TORC1 kinase complex

Yui Tomioka ... Hitoshi Nakatogawa

10 **Proteasome distribution modulates GABA responses in developing neurons**

The adaptor protein Ecm29 positions proteasomes at the axon initial segment to promote degradation of the chloride transporter NKCC1 and limit neuronal excitability

Min Lee ... Pei-Lin Cheng

11 **Neutral lipids control protein recruitment to lipid droplets**

The neutral lipid core content is determinant to the affinity of amphipathic helices for artificial lipid droplets

Aymeric Chorlay and Abdou Rachid Thiam

12 **Unravelling the critical steps in mitophagy**

Study reveals that mitochondrial ubiquitination and an interaction between OPTN and ATG9A are crucial for inducing the selective degradation of damaged mitochondria

Koji Yamano ... Noriyuki Matsuda

13 **Breast cancer cells turn killer immune cells into allies**

Natural killer cells are reprogrammed by breast cancer cells to promote metastasis

Isaac S. Chan ... Andrew J. Ewald

14 **ISG15 accelerates replication fork progression**

The ubiquitin-like molecule ISG15, which is induced by interferons and is often upregulated in cancer cells, can increase genome instability and sensitize cells to genotoxic drugs

Maria Chiara Raso ... Lorenza Penengo

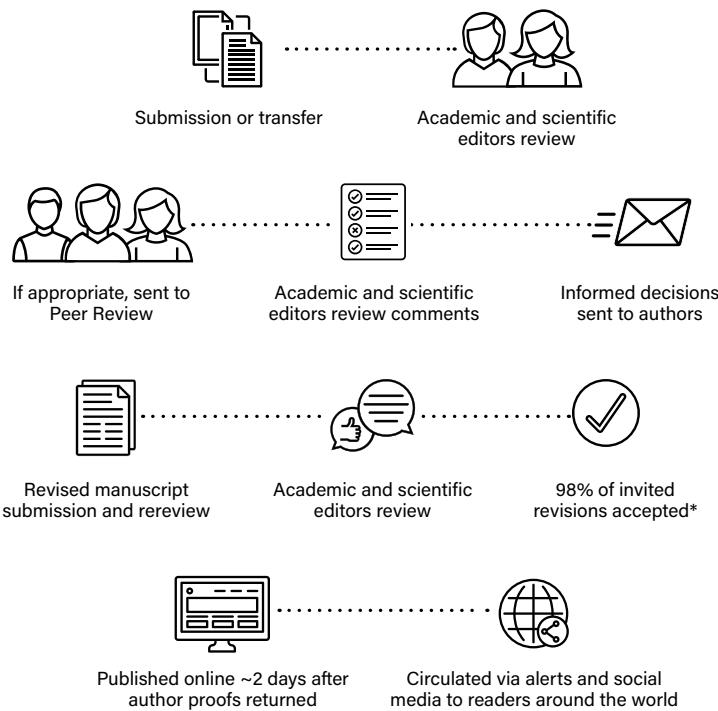
15 **Microtubules help migrating cells keep their shape**

Dendritic cells coordinate their movement through complex microenvironments by using the local depolymerization of microtubules to trigger the actomyosin-mediated retraction of protrusions

Aglaia Kopf ... Eva Kiermaier, Michael Sixt

Brochure articles by Ben Short, PhD

Design by Yuko Tono


On the cover: A confocal maximum intensity projection image of HeLa cells. Core autophagy protein ATG9A vesicles (orange) are recruited to liquid droplets composed of Optineurin (green) and ubiquitin chain. Optineurin-ATG9A interaction is critical for the selective degradation of mitochondria (cyan). Nuclei are labeled in blue. Image © 2020 Yamano et al. See the associated article on page 12.

WHY SUBMIT TO JCB?

AN EDITORIAL PROCESS GUIDED BY YOUR COMMUNITY

At *Journal of Cell Biology*, all editorial decisions on research manuscripts are made through collaborative consultation between professional scientific editors and the academic editorial board.

98% OF INVITED REVISIONS
ARE ACCEPTED

INITIAL DECISION IN 6 DAYS

27% PAPERS ACCEPTED AFTER
ONE ROUND OF REVIEW

TIME IN PEER REVIEW: 31 DAYS

RAPID DECISIONS ON
TRANSFER MANUSCRIPTS

*Median 2019

Format Neutral
You may submit your
papers in ANY format.

Transfer Policy
We welcome submissions that include
reviewer comments from another journal.
You may also request manuscript transfer
between Rockefeller University Press
journals, and we can confidentially send
reviewer reports and identities to another
journal beyond RUP.

Fair and Fast
We limit rounds of revision,
and we strive to provide
clear, detailed decisions that
illustrate what is expected in
the revisions. Articles appear
online about two days after
author proofs are returned.

Open Access Options
Our options include
Immediate Open
Access (CC-BY) and open
access 6 months after
publication (CC-BY-NC-SA).

CONNECT
WITH JCB

@JCellBiol

Journal of Cell Biology

@rockefeller_university_press

jcb@rockefeller.edu

www.jcb.org

Editor-In-Chief

Jodi Nunnari

Executive Editor

Tim Spencer

email: tspencer@rockefeller.edu

Editors

Arshad Desai

Pier Paolo Di Fiore

Elaine Fuchs

Anna Huttenlocher

Ian Macara

Ira Mellman

Ana Pombo

Louis F. Reichardt

Kenneth M. Yamada

Richard Youle

Senior Scientific Editor

Melina Casadio

email: mcasadio@rockefeller.edu

Senior Scientific Editor, Reviews

Andrea Marat

email: amarat@rockefeller.edu

Scientific Editors

Lucia Morgado Palacin

email: lmorgado@rockefeller.edu

Dan Simon

email: dsimon01@rockefeller.edu

Managing Editor

Lindsey Hollander

Phone: 212-327-8588

email: jcellbiol@rockefeller.edu

Editorial Board

John Aitchison

Johan Auwerx

Manuela Baccarini

Tamas Balla

Maureen Barr

Bill Bement

Vann Bennett

Dominique Bergmann

Monica Bettencourt-Dias

Joerg Bewersdorf

Magdalena Bezanilla

Cédric Blanpain

Julius Brennecke

Tony Bretscher

Marianne Bronner

Valérie Castellani

Daniela Cimini

Karlene Cimprich

Don W. Cleveland

Nika Danial

William Earnshaw

Jan Ellenberg

Scott Emr

Anne Ephrussi

Jeffrey Esko

Sandrine Etienne-Manneville

Marc Freeman

Judith Fryzman

Hironori Funabiki

Melissa Gardner

Larry Gerace

David Gilbert

Bruce Goode

Yukiko Gotoh

Roger Greenberg

Marcia Haigis

Ulrich Hartl

Rebecca Heald

Martin Hetzer

Erika Holzbaur

Martin Humphries

James Hurley

Fumiyo Ikeda

Luisa Iruela-Arispe

Nancy Ip

Johanna Ivaska

Tarun Kapoor

Gerard Karsenty

Scott Keeney

Alexey Khodjakov

Hiroshi Kimura

Jürgen Knoblich

Alberto R. Kornblith

Thomas Langer

Ana Maria Lennon-Dumenil

Andres Leschziner

Danny Lew

Jens Lykke-Andersen

Vivek Malhotra

Brendan Manning

Joan Massague

Satyajit Mayor

Frauke Melchior

Tobias Meyer

Liz Miller

Alex Mogilner

Sean Munro

Maxence Nachury

Karla Neugebauer

Carien Niessen

Eva Nogales

Karen Oegema

Ewa Paluch

Mark Peifer

Elior Peles

Will Prinz

Thomas Rando

Samara Reck-Peterson

Daniel B. Rifkin

Michael Rout

Craig Roy

Michael Rudnicki

Erik Sahai

Martin Schwartz

Shu-ou Shan

Andrey Shaw

Zu-Hang Sheng

Agata Smogorzewska

Joan Steitz

Harald Stenmark

Aaron Straight

Maria-Elena Torres-Padilla

Billy Tsai

Bas van Steensel

Patrik Verstreken

Mark von Zastrow

Erwin Wagner

John Wallingford

Tobias Walther

Xiaochen Wang

Lois Weisman

Min Wu

Tim Yen

Tamotsu Yoshimori

Li Yu

Xiang Yu

Junying Yuan

Marino Zerial

Hong Zhang

Yixian Zheng

Senior Preflight Editor

Laura Smith

Preflight Editor

Rochelle Ritacco

Assistant Production Editor

Elissa Hunter

Senior Production Editor

Samantha Wolner

Production Manager

Camille Clowery

Production Designer

Erinn A. Grady

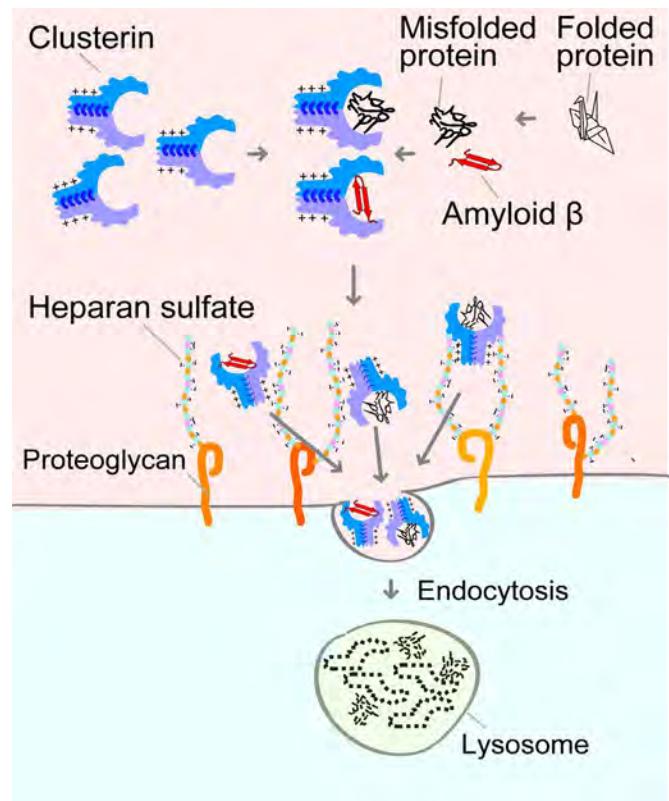
Copyright to articles published in this journal is held by the authors. Articles are published by Rockefeller University Press under license from the authors. Conditions for reuse of the articles by third parties are listed at <http://www.rupress.org/terms>.

Print ISSN: 0021-9525.

Online ISSN: 1540-8140

Rockefeller University Press

A SYSTEM TO REMOVE ABERRANT EXTRACELLULAR PROTEINS

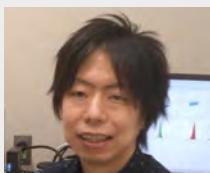

The chaperone Clusterin works in combination with heparan sulfate proteoglycans to bring misfolded proteins into cells for degradation

A number of diseases are believed to be caused by the gradual buildup of misfolded proteins that can aggregate together and damage neurons and other cells in the body. To help prevent this damage, cells have developed numerous quality control systems that recognize misfolded proteins within the cell and either fold them back into their correct shape or degrade them before they start to aggregate.

"However, approximately 11% of human proteins exist outside of the cell, where they are subjected to even more stresses that may cause them to misfold," says Eisuke Itakura, an assistant professor in the Department of Biology at Chiba University in Japan. "In addition, Alzheimer's disease, the most prevalent cause of dementia affecting 47.5 million people worldwide, is characterized by aggregates of amyloid β protein in the extracellular space. Despite this, how aberrant extracellular proteins are degraded remains poorly understood."

A chaperone protein called Clusterin can bind to misfolded extracellular proteins and prevent them from aggregating. Itakura and colleagues discovered that Clusterin can escort misfolded proteins into the cell and deliver them to the lysosomes for degradation. Using a genome-wide

A model of the CRED pathway in which Clusterin and heparan sulfate bring aberrant extracellular proteins, including amyloid β , into cells where they can be degraded by lysosomes. © 2020 Itakura et al.


CRISPR-based screen, the researchers found that, after binding to misfolded proteins, Clusterin enters cells by interacting with heparan sulfate proteoglycans, a large class of proteins that are present on the surface of almost all human cells. This interaction requires a group of conserved, positively-charged residues on Clusterin that electrostatically interact with negatively-charged heparan sulfate.

Itakura and colleagues found that, together, Clusterin and heparan sulfate proteoglycans allow many different cell types to internalize and degrade a wide variety of misfolded extracellular proteins. "We therefore think that this pathway is a general extracellular protein quality control system responsible for the clearance of misfolded proteins from diverse

tissues and body fluids," Itakura says. The researchers named this system the chaperone- and receptor-mediated extracellular protein degradation (CRED) pathway.

Intriguingly, Itakura and colleagues found that the CRED pathway can import amyloid β into cells for degradation. Mutations in the gene encoding Clusterin have been linked to an increased risk of developing Alzheimer's disease, and experiments in rats have shown that injecting Clusterin into the brain can prevent amyloid β -induced neurodegeneration. "Our results therefore suggest new avenues for the possible treatment or prevention of disorders such as Alzheimer's disease that are associated with aberrant extracellular proteins," Itakura says.

RESEARCHER DETAILS

Eisuke Itakura
 Assistant Professor
 Chiba University
eitakura@chiba-u.jp

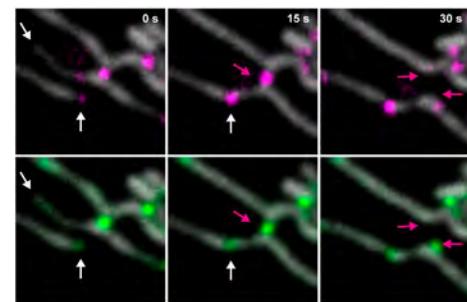
ORIGINAL PAPER

Itakura, E., M. Chiba, T. Murata, and A. Matsuura. 2020. Heparan sulfate is a clearance receptor for aberrant extracellular proteins. *J. Cell Biol.* 219: e20191126.
<https://doi.org/10.1083/jcb.20191126>

ER CONTACTS COORDINATE MITOCHONDRIAL DYNAMICS

Mitochondrial fission and fusion machineries colocalize at ER membrane contact sites, where they can rapidly modulate mitochondrial morphology in response to metabolic cues

The steady-state morphology of the mitochondrial network within cells is maintained by a balance of mitochondrial fission and fusion. Disrupting this balance causes the mitochondrial network to become either fragmented or elongated, potentially resulting in altered cell metabolism and disease.


Mitochondrial fission preferentially occurs at sites where the mitochondria contacts the ER. The dynamin-related GTPase Drp1 accumulates at these membrane contact sites (MCSs), and drives mitochondrial constriction and division. Mitochondrial fusion is also regulated by dynamin-related GTPases—the mitofusins Mfn1 and Mfn2 promote outer membrane fusion while Opa1 controls fusion of the inner mitochondrial membrane—but how these GTPase are positioned to define the site of fusion is unknown. However, fission and fusion may be spatially coordinated because mitochondria can sometimes undergo “transient” fusions, in which two mitochondria fuse and share their contents, before separating again to resume their original morphology.

“We hypothesized that if fission and fusion are coordinated, then the mitochondrial fusion machinery

might also assemble at ER MCSs,” explains Gia Voeltz, a Howard Hughes Investigator and Professor at the University of Colorado, Boulder.

Using a variety of sophisticated imaging techniques, Voeltz and colleagues, including first author Robert Abrisch, found that mitofusins do, in fact, accumulate at ER MCSs and that these contact sites mark the location of ~90% of mitochondrial fusion events. “That’s strikingly similar to the 88% of mitochondrial fission events scored to occur at ER MCSs,” Voeltz says.

Further experiments revealed that Drp1 and Mfn1 colocalize at ER MCSs and that a fusion event at one site is often followed by fission at the exact same place. Voeltz and colleagues suspected that these hotspots of mitochondrial dynamics might be able to rapidly respond to metabolic cues and could, for example, allow damaged mitochondria to quickly recover their function by transiently fusing and exchanging components with neighboring, healthy mitochondria. Indeed, the researchers found that ER MCSs often mark the boundaries between polarized (healthy) and depolarized (unhealthy) segments of mitochondria, and that depolarized

Mfn1 (green) and Drp1 (magenta) colocalize at ER MCSs, where they mediate, respectively, the fusion (white arrows) and fission (magenta arrows) of mitochondria (grey).
© 2020 Abrisch et al.


mitochondria can restore their membrane potential by fusing with healthy neighbors at ER MCSs.

“Depolarization of individual mitochondria pushes the reaction at ER MCSs toward fusion, resulting in the recovery of membrane potential,” Voeltz says. “But other signals may push the reaction toward fission. Future studies will investigate whether fission and fusion rates are determined by the relative recruitment and/or posttranslational modifications of the different machineries at ER MCSs, by small signaling molecules like Ca^{2+} , or by the recruitment of activators or inhibitors of these machineries.”

RESEARCHER DETAILS

Robert G. Abrisch
PhD student
University of Colorado, Boulder
(Currently a postdoctoral fellow at UC San Diego)

Samantha C. Gumbin
Undergraduate/Junior technician
University of Colorado, Boulder
(Currently a graduate student at Stanford University)

Gia K. Voeltz
HHMI Investigator and Professor, University of Colorado, Boulder
gia.voeltz@colorado.edu

ORIGINAL PAPER

Abrisch, R.G., S.C. Gumbin, B.T. Wisniewski, L.L. Lackner, and G.K. Voeltz. 2020. Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. *J. Cell Biol.* 219: e201911122.

<https://doi.org/10.1083/jcb.201911122>

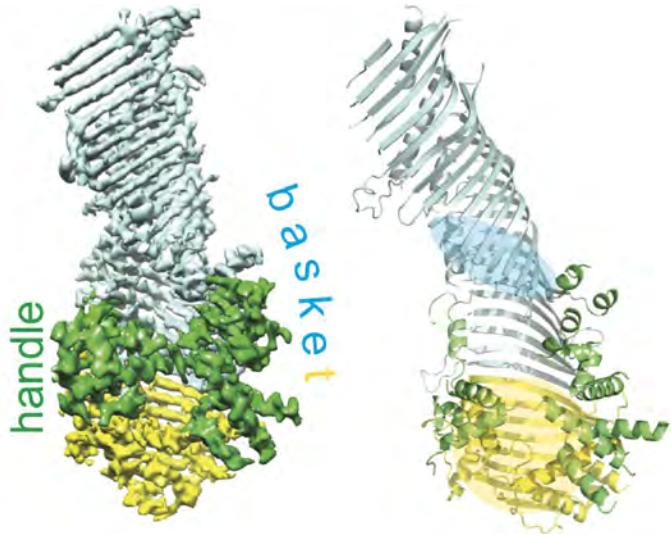
VPS13 FORMS A LIPID CHANNEL BETWEEN MEMBRANES

Cryo-EM of VPS13 N-terminal fragment reveals a hydrophobic groove that may allow bulk lipid flow between organelles

Lipids constantly need to be exchanged between the various different membranes of eukaryotic cells. For example, most membrane lipids are synthesized in the ER and must then be delivered to other organelles. This is carried out, in part, by lipid transfer proteins that localize to the membrane contact sites between organelles and act as shuttles, extracting lipid molecules from one organelle and then depositing it in the membrane of the other.

"Typically, these lipid transport proteins comprise domains resembling lidded teacups, each with a hydrophobic cavity that accommodates one or two lipid molecules," explains Karin Reinisch, a professor at Yale School of Medicine. This limited capacity is unlikely to be sufficient when large amounts of lipid need to be transferred rapidly, such as during the assembly of the autophagosome during autophagy, or the formation of the prospore membrane during yeast meiosis.

The density map (left) and secondary structure (right) of VPS₁₃₁₋₁₃₉₀ show the fragment's basket-like structure and the extended, hydrophobic channel that may facilitate lipid flow between membranes. © 2020 Li et al.


The VPS13 family of lipid transport proteins may work differently, however. These very large proteins are thought to tether organelles together at membrane contact sites and can bind tens of lipid molecules at a time. Budding yeast Vps13p is required for prospore membrane formation, and, in humans, there are four family members, some of which are linked to severe neurodegenerative disease.

Reinisch and colleagues, including first author PeiQi Li, carried out a single-particle cryo-EM reconstruction of a ~160-kD N-terminal fragment of the VPS13 protein of the filamentous fungus *Chaetomium thermophilum*. The researchers found that the fragment adopts a basket-like structure whose interior is lined with hydrophobic residues. Thus, the N-terminal region of VPS13 forms an extended channel, ~160 Å in length, that would be well-suited to solubilizing multiple lipid molecules at a time.

Instead of shuttling lipids between membranes, VPS13 proteins might therefore act like bridges, tethering

organelles together via their N- and C-termini and allowing lipids to flow from one membrane to the other through their hydrophobic channels. As an initial test of this idea, Li et al. created mutant versions of budding yeast Vps13p in which sections of the channel were switched to hydrophilic residues instead of hydrophobic ones. These *vps13* mutants could still bind lipids but they were unable to support sporulation, indicating that they are incapable of transferring lipids during prospore formation.

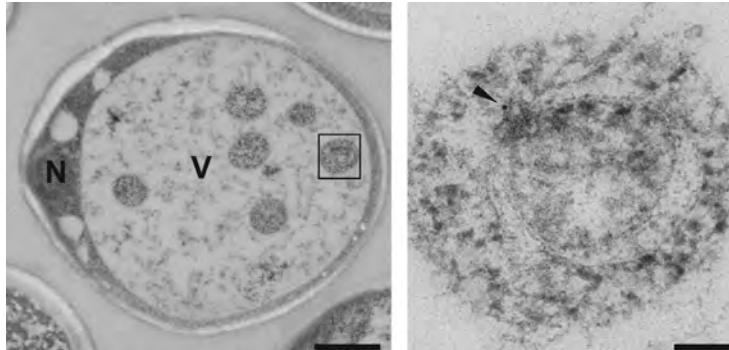
"The size of the VPS13 lipid-binding cavity and, hence, the ability of these proteins to accommodate many lipids simultaneously suggests a role in bulk lipid transfer," says Reinisch, who notes that the VPS13-like protein ATG2 may act similarly to promote autophagosome assembly during autophagy.

RESEARCHER DETAILS

PeiQi Li
Graduate student
Yale School of Medicine

Karin M. Reinisch
Professor
Yale School of Medicine
karin.reinisch@yale.edu

ORIGINAL PAPER


Li, P., J.A. Lees, C.P. Lusk, and K.M. Reinisch. 2020. Cryo-EM reconstruction of a VPS13 fragment reveals a long groove to channel lipids between membranes. *J. Cell Biol.* 219: e202001161.

<https://doi.org/10.1083/jcb.202001161>

AUTOPHAGY TARGETS NUCLEAR PORE COMPLEXES

Several different pathways selectively target NPCs and nucleoporins for autophagic degradation upon inactivation of the TORC1 kinase complex

Composed of ~30 different nucleoporin proteins, nuclear pore complexes (NPCs) span the inner and outer membranes of the nuclear envelope and mediate transport between the nucleus and cytoplasm, thereby playing critical roles in gene expression, cell growth and division. Defects in NPC function have been linked to aging and a variety of illnesses including Alzheimer's disease and cancer. Cells are therefore likely to employ a variety of quality control mechanisms to ensure they maintain an appropriate number of functional NPCs. "However, the cellular systems that degrade the NPC or nucleoporins are still largely unknown," says Hitoshi Nakatogawa from the Tokyo Institute of Technology.

In yeast cells lacking vacuolar proteases, TORC1 inactivation leads to the accumulation of Nup159-containing structures (arrowhead) embedded in nuclear envelope-derived double-membrane vesicles located inside autophagosomes that have been delivered to the vacuole. © 2020 Tomioka et al.

Nakatogawa and colleagues, including first author Yui Tomioka, investigated whether NPCs are broken down by autophagy, a process in which cellular components are engulfed by autophagosomes and delivered to lysosomes for degradation. The researchers found that inducing the autophagy pathway in budding yeast by inactivating the TORC1 kinase complex resulted in the degradation of multiple nucleoporins. Blocking degradation caused these NPC components to accumulate in vacuoles—the yeast equivalent of lysosomes—where they appeared to be embedded within nuclear envelope-derived double-membrane vesicles. This suggests that nucleoporins can be engulfed by

autophagosomes and delivered to lysosomes while they are still assembled into NPCs.

Though autophagy can be a nonselective process, many cellular components are targeted to autophagosomes by specific autophagy receptors that

interact with either Atg11, which then initiates autophagosome formation, or Atg8, a protein located on forming autophagosomal membranes. Tomioka et al. found that yeast lacking Atg11, or yeast expressing an Atg8 mutant unable to bind autophagy receptors, failed to degrade nucleoporins upon TORC1 inactivation, indicating that NPCs/nucleoporins are selectively targeted to autophagosomes.

Nakatogawa and colleagues determined that some NPCs are targeted by a previously identified pathway called nucleophagy, in which nuclear envelope-derived vesicles are recruited to autophagosomes via an autophagy receptor in the outer nuclear membrane called Atg39. But NPCs can also be targeted via a different pathway, that the researchers named NPC-phagy, involving an as yet unknown autophagy receptor.

In addition, Tomioka et al. found that one nucleoporin, Nup159, can bind directly to Atg8. Disrupting this interaction impaired the turnover of Nup159 but had no effect on the degradation of other nucleoporins, suggesting that nucleoporins not assembled into NPCs can also be targeted to autophagosomes via a process the researchers dubbed nucleoporinophagy.

Together, these different selective autophagy pathways are likely to help cells maintain the structural and functional integrity of their NPCs. "Our study provides a foundation for understanding the molecular mechanisms and physiological/pathological significance of these autophagy pathways in various organisms," Nakatogawa says.

RESEARCHER DETAILS

Hitoshi Nakatogawa (Left)
Associate Professor
Tokyo Institute of Technology
hnakatogawa@bio.titech.ac.jp

Yui Tomioka (Right)
PhD Student
Tokyo Institute of Technology

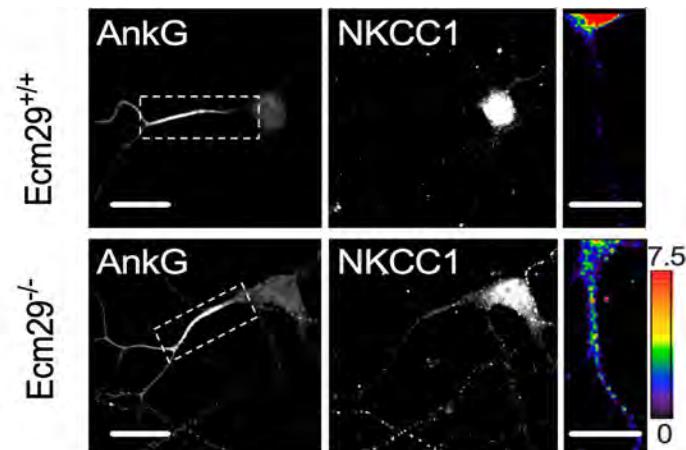
ORIGINAL PAPER

Tomioka, T., T. Kotani, H. Kirisako, Y. Oikawa, Y. Kimura, H. Hirano, Y. Ohsumi, and H. Nakatogawa. 2020. TORC1 inactivation stimulates autophagy of nucleoporin and nuclear pore complexes. *J. Cell Biol.* 219: e201910063.

<https://doi.org/10.1083/jcb.201910063>

PROTEASOME DISTRIBUTION MODULATES GABA RESPONSES IN DEVELOPING NEURONS

The adaptor protein Ecm29 positions proteasomes at the axon initial segment to promote degradation of the chloride transporter NKCC1 and limit neuronal excitability


The response of mouse neurons to the neurotransmitter GABA changes from excitatory to inhibitory during the first few weeks after birth, a developmental switch that helps to establish the lifelong activity of local neuronal circuits. The change in GABA response is due to a reduction in the intracellular chloride concentration in neurons that is thought to be driven by increased expression of the chloride exporter KCC2 and decreased levels of the chloride importer NKCC1. "However, how NKCC1 levels are down-regulated during the excitatory-to-inhibitory GABA transition remains unclear," says Pei-Lin Cheng, an Associate Research Fellow at the Institute of Molecular Biology in Taiwan.

Cheng and colleagues, including first author Min Lee, discovered that developing neurons regulate NKCC1 levels and the GABA response by localizing the protein-degrading proteasome to the axon initial segment (AIS), a specialized membrane domain that forms around the same time as the GABAergic switch. Composed of various scaffold proteins such as ankyrin G, the AIS segregates the axonal and

somatodendritic compartments of neurons and controls action potential firing. Cheng and colleagues found that, as the AIS assembles in developing hippocampal and cortical neurons, an adaptor protein called Ecm29 tethers proteasomes to the AIS by binding to ankyrin G.

Neurons lacking Ecm29 showed reduced protein turnover at the AIS, and Ecm29-deficient mouse brains showed higher levels of NKCC1 that declined more slowly during the postnatal period. NKCC1 levels were particularly elevated in the AIS region of neurons. As a result, the switch from excitatory to inhibitory GABA responses was delayed in Ecm29-knockout mice, causing the animals' neurons to be hyperexcitable during this critical period in neuronal development.

"We hypothesized that prolonged NKCC1 expression/excitatory GABA responsiveness in Ecm29-deficient immature neurons puts mice at higher risk of seizures," Cheng says. Indeed, Lee et al. found that Ecm29-null mice were more susceptible to chemical-induced seizures, but were protected if treated with a potent NKCC1 inhibitor during the first few weeks of life.

NKCC1 levels in the AIS region of neurons are increased in the absence of the proteasome adaptor Ecm29 (bottom). A linear pseudocolored scale shows the intensity of NKCC1 staining within the AIS (marked by ankyrin G). © 2020 Lee et al.

"Our findings provide a developmental mechanism linking timing of AIS formation, proteasome transport, and subcellular proteostasis to the critical window of the GABAergic switch, which governs excitability of maturing hippocampal/cortical neurons and is mediated by Ecm29," says Cheng, who notes that changes in AIS-associated proteins have been linked to various neurodevelopmental and psychiatric disorders, including epilepsy.

RESEARCHER DETAILS

Min Lee
Research Assistant
Institute of Molecular
Biology, Academia Sinica

Pei-Lin Cheng
Associate Research Fellow
Institute of Molecular Biology,
Academia Sinica
plcheng@imb.sinica.edu.tw

ORIGINAL PAPER

Lee, M., Y.-C. Liu, C. Chen, C.-H. Lu, S.-T. Lu, T.-N. Huang, M.-T. Hsu, Y.-P. Hsueh, and P.-L. Cheng. 2020. Ecm29-mediated proteasomal distribution modulates excitatory GABA responses in the developing brain. *J. Cell Biol.* 219: e201903033.

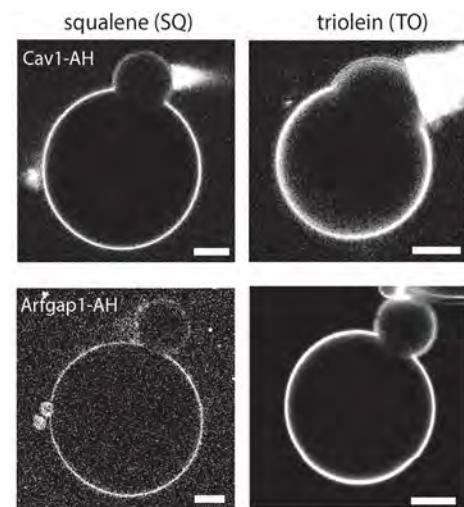
<https://doi.org/10.1083/jcb.201903033>

NEUTRAL LIPIDS CONTROL PROTEIN RECRUITMENT TO LIPID DROPLETS

The neutral lipid core content is determinant to the affinity of amphipathic helices for artificial lipid droplets

Lipid droplets (LDs) store neutral lipids and control their hydrolysis to meet the cell's demands for energy or membrane synthesis. Formed at the ER—the major site of lipid synthesis in eukaryotic cells—LDs are composed of a central neutral lipid core, surrounded by a phospholipid monolayer containing numerous regulatory proteins.

Many of these proteins bind to LDs via amphipathic helices (AHs), but how these helices selectively target LDs—or even specific subsets of LDs—remains unclear. After all, AHs can also target proteins to the cell's many different membranes by inserting themselves into the hydrophobic core of lipid bilayers. "In the case of LDs, AHs have to expose their hydrophobic moieties to the neutral lipid core. Thus, interactions between the hydrophobic amino acids of an AH with neutral lipids could be a major driving force for LD targeting," says Abdou Rachid Thiam, a professor at the École Normale Supérieure in Paris.


To test this idea, Thiam and graduate student Aymeric Chorlay measured the binding of various AHs to artificial LDs embedded within the bilayer of giant vesicles *in vitro* (mimicking the emergence of cellular LDs from within the ER bilayer). Chorlay and Thiam

The AHs of the LD proteins Cav1 and Arfgap1 are recruited to artificial LDs budding from the bilayer of giant vesicles *in vitro*, preferentially binding LDs composed of the neutral lipid triolein, compared with LDs made from squalene. © 2020 Chorlay and Thiam

found that AH peptides derived from LD proteins differentially bound to artificial LDs, depending on the neutral lipid making up the droplet's core.

"We found that neutral lipid composition determines the binding level of AHs, and the ability of AHs to discriminate between neutral lipids relies on their amphipathic amino acid sequence," Thiam explains. For example, mutations in the AH of the LD protein Cav1 either enhanced or abolished its preference for artificial LDs composed of the neutral lipid triolein.

Chorlay and Thiam also determined that the phospholipids surrounding LDs influence AH binding by regulating the access of AHs to the neutral lipid core. However, while reducing the density of phospholipids on artificial LDs increased AH binding, it didn't change the AHs's relative preference for LDs composed of particular neutral lipids.

"Overall, our data highlight an undervalued contribution of neutral lipids in controlling the binding of AHs to the surface of LDs," Thiam says. "The phospholipid packing density simply regulates the amount of exposed neutral lipids, which dictates the binding level of AHs. Clearly, the full picture of how AHs selectively bind to LDs in a cellular context is not completely resolved yet, but our data bring us a major step closer to it."

RESEARCHER DETAILS

Aymeric Chorlay

PhD student
École Normale Supérieure
de Paris, PSL, Université de
Paris, Sorbonne Université,
CNRS

Abdou Rachid Thiam

Professor
École Normale Supérieure de
Paris, PSL, Université de Paris,
Sorbonne Université, CNRS
thiam@ens.fr

ORIGINAL PAPER

Chorlay, A. and A.R. Thiam. 2020. Neutral lipids regulate amphipathic helix affinity for model lipid droplets. *J. Cell Biol.* 219: e201907099.

<https://doi.org/10.1083/jcb.201907099>

UNRAVELLING THE CRITICAL STEPS IN MITOPHAGY

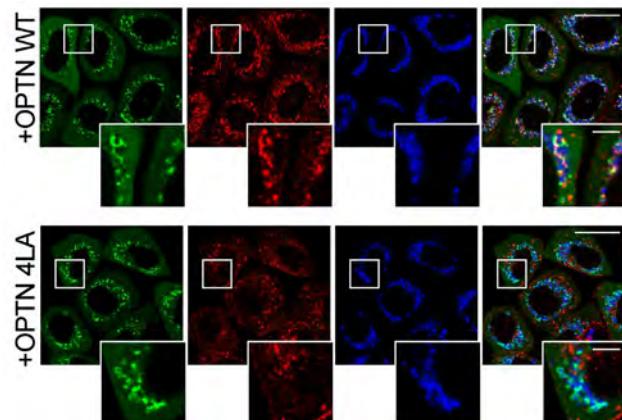
Study reveals that mitochondrial ubiquitination and an interaction between OPTN and ATG9A are crucial for inducing the selective degradation of damaged mitochondria

Damaged mitochondria are quickly eliminated by a process called mitophagy, a selective type of autophagy in which the organelles are engulfed by autophagosomes and delivered to lysosomes for degradation. Two proteins linked to familial Parkinson's disease—the ubiquitin kinase PINK1 and the ubiquitin ligase Parkin—recognize depolarized mitochondria and rapidly coat the outer membrane with ubiquitin chains that act as a signal for the assembly of autophagosomal membranes around the damaged organelles.

"However, it was unclear whether Parkin and PINK1 function solely in the ubiquitination of dysfunctional mitochondria, or if they also physically communicate with the core autophagy machinery," says Koji Yamano from the Tokyo Metropolitan Institute of Medical Science.

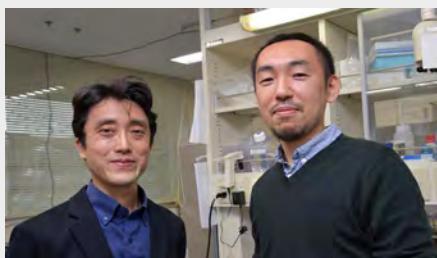
To address this question, Yamano and colleagues, including co-senior author Noriyuki Matsuda, devised ways to tag mitochondria with ubiquitin chains independently of PINK1, Parkin, or mitochondrial depolarization. The researchers found that the addition of short, linear ubiquitin chains to mitochondria was sufficient to induce mitophagy and mitochondrial degradation. "This

demonstrates that the Parkin–PINK1 system is essential for ubiquitination of damaged mitochondria but is not required for autophagy activation per se," Yamano says.


Ubiquitinated mitochondria are thought to be linked to autophagosomes by five different autophagy adaptors that, in addition to binding ubiquitin, can also bind to ATG8 proteins on the autophagosomal membrane. Two of these adaptors—OPTN and NDP52—appear to be particularly crucial for mitophagy. Surprisingly, however,

Yamano and colleagues determined that this isn't because OPTN and NDP52 have a higher affinity for ATG8 proteins.

Instead, the researchers discovered, OPTN plays a critical role in mitophagy by recruiting ATG9A vesicles to ubiquitinated mitochondria (these vesicles are thought to supply components that aid autophagosome assembly). Yamano et al. found that the leucine zipper domain of OPTN binds to ATG9A. Mutations in this domain reduced the


ability of OPTN to support mitophagy even more than mutations in OPTN's ATG8-binding domain.

Other recent studies have shown that the other crucial mitophagy adaptor, NDP52, can recruit the autophagy-activating ULK complex to damaged mitochondria. "Our study, in conjugation with these previous reports, indicates that the association of OPTN (and NDP52) with ubiquitinated mitochondria promotes the formation of an initial platform that triggers the assembly of different autophagy core units through multivalent interactions," Yamano says. "These functionalities thus fulfill a critical role for *de novo* autophagosomal membrane formation close to the ubiquitinated cargo."

Following mitochondrial depolarization, ATG9A (red) is recruited to mitochondria (blue) in cells expressing wild-type OPTN (green, top row) but not in cells expressing OPTN with a mutated leucine zipper domain (green, bottom row). © 2020 Yamano et al.

RESEARCHER DETAILS

Noriyuki Matsuda (Left)

Project Leader
Tokyo Metropolitan Institute of Medical Science
matsuda-nr@igakuken.or.jp

Koji Yamano (right)
Senior Researcher
Tokyo Metropolitan Institute of Medical Science
yamano-kj@igakuken.or.jp

ORIGINAL PAPER

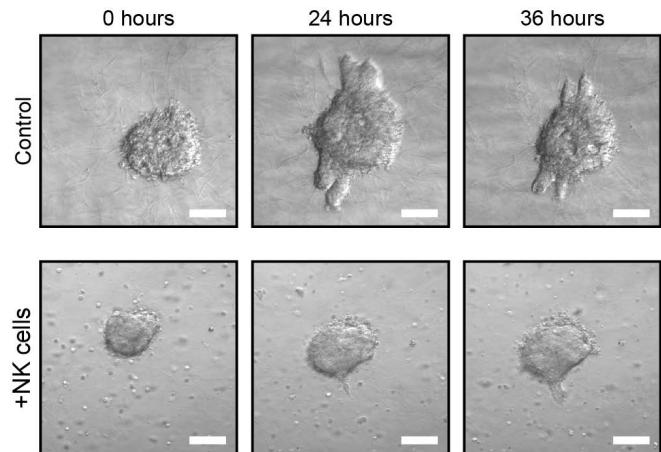
Yamano, K., R. Kikuchi, W. Kojima, R. Hayashida, F. Koyano, J. Kawawaki, T. Shoda, Y. Demizu, M. Naito, K. Tanaka, and N. Matsuda. 2020. Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy. *J. Cell Biol.* 219: e201912144.

<https://doi.org/10.1083/jcb.201912144>

BREAST CANCER CELLS TURN KILLER IMMUNE CELLS INTO ALLIES

Natural killer cells are reprogrammed by breast cancer cells to promote metastasis

Breast cancer cells spread to other parts of the body by invading the surrounding, healthy breast tissue until they reach the circulation, which can carry them to other tissues where they can form new metastatic tumors, a major cause of death in breast cancer patients. Natural killer (NK) cells are key components of the innate immune system that can recognize and kill cancer cells as they attempt to spread through the body.

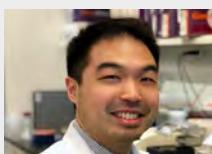

"Breast cancer cells must overcome NK cell surveillance in order to form distant metastases," says Andrew Ewald, a professor of cell biology at Johns Hopkins University School of Medicine and co-director of the Cancer Invasion and Metastasis Program in the Sidney Kimmel Comprehensive Cancer Center. "However, we do not fully understand how breast cancer cells escape NK cell-mediated immunosurveillance during their transit through the circulation and the initial seeding of distant organs."

Ewald and colleagues, including first author Isaac Chan, discovered that, although metastasizing breast cancer cells are initially vulnerable to NK cells, they are quickly able to alter the behavior of their would-be killers,

reprogramming them so that they actually promote the later stages of metastasis. Using several new assays to model metastasis in the laboratory as well as experiments in mice, the researchers found that, after they encounter tumor cells, human and mouse NK cells lose the ability to restrict tumor invasion and instead help cancer cells form new tumors.

NK cells exposed to tumors undergo dramatic changes, turning thousands of genes on and off and expressing different receptor proteins on their surface. Ewald and colleagues found that antibodies targeting two key receptor proteins on the surface of NK cells, called TIGIT and KLRG1, prevented NK cells from helping breast cancer cells seed new tumors. The FDA-approved drugs decitabine and azacitidine had similar effects, likely because they prevent large-scale changes in gene activity by inhibiting enzymes known as DNA methyltransferases.

The researchers found that combining decitabine or azacitidine


Initially, the presence of NK cells (bottom row) restricts the growth of tumor organoids in 3D collagen matrices. But after 36 h, the cancer cells reprogram the NK cells, and the tumor starts to invade its surroundings. © 2020 Chan et al.

treatment with anti-TIGIT or anti-KLRG1 antibodies was particularly effective at preventing NK cells from enhancing the metastatic potential of breast cancer cells.

"The synergistic effects of DNA methyltransferase inhibitors with receptor-blocking antibodies suggests a viable clinical strategy to reactivate tumor-exposed NK cells to target and eliminate breast cancer metastases," says Chan.

Ewald notes, "Combined with our observation that NK cells are abundant early responders to disseminated breast cancer cells, our data provide a preclinical rationale for the concept of NK cell-directed immunotherapies in the adjuvant setting for breast cancer patients with high risk of metastatic recurrence."

RESEARCHER DETAILS

Isaac S. Chan

Medical Oncology Fellow
Sidney Kimmel Comprehensive Cancer Center,
Johns Hopkins University School of Medicine
isaac.chan@utsouthwestern.edu

Andrew J. Ewald

Professor of Cell Biology
Sidney Kimmel Comprehensive Cancer Center,
Johns Hopkins University School of Medicine
andrew.ewald@jhmi.edu

ORIGINAL PAPER

Chan, I.S., H. Knútsdóttir, G. Ramakrishnan, V. Padmanaban, M. Warrier, J.C. Ramirez, M. Dunworth, H. Zhang, E.M. Jaffee, J.S. Bader, and A.J. Ewald. 2020. Cancer cells educate natural killer cells to a metastasis-promoting cell state. *J. Cell Biol.* 219: e202001134.

<https://doi.org/10.1083/jcb.202001134>

ISG15 ACCELERATES REPLICATION FORK PROGRESSION

The ubiquitin-like molecule ISG15, which is induced by interferons and is often upregulated in cancer cells, can increase genome instability and sensitize cells to genotoxic drugs

ISG15 is strongly induced by type I and type III interferons in response to bacterial or viral infection. Though its amino acid sequence is very different, ISG15's 3D structure is similar to ubiquitin and, like ubiquitin, it can be conjugated to other proteins by E3 ligases. But increasing evidence suggests that ISG15 can modulate the host immune response by non-covalently binding to other proteins or even by acting as a cytokine secreted from cells.

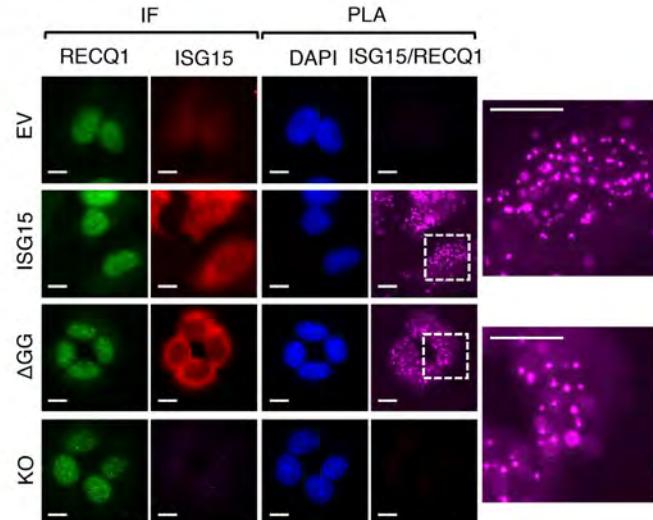
ISG15 is also induced by DNA damage and is frequently overexpressed in cancer cells.

"Elevated *ISG15* levels occur in many types of cancer and, in some cases, the robust expression of *ISG15* has been reported to support tumor growth," explains Lorenza Penengo from the Institute of Molecular Cancer Research at the University of Zurich. "However, its role in tumorigenesis is still controversial, and its mechanism of action is far from being clarified."

Penengo and colleagues, including first author Chiara Raso, discovered that ISG15 localizes to DNA replication forks, suggesting that it might modulate DNA replication. Inducing *ISG15* expression

accelerated fork progression, whereas deleting the gene reduced the speed of DNA replication in several cancer cell lines that usually overexpress *ISG15*.

Raso et al. determined that ISG15 can regulate DNA replication fork progression through non-covalent mechanisms: overexpression of a mutant version incapable of being conjugated to other proteins still accelerated fork progression.


The researchers found that ISG15 associates with several proteins at replication forks, including a DNA helicase, RECQ1, that helps to restart stalled forks. "Depletion of RECQ1 completely abolished the accelerated replication fork progression induced by high levels of ISG15, suggesting that ISG15 may regulate RECQ1 function by unleashing its restart

activity," Penengo says. Indeed, increased ISG15 levels promoted fork restart in a RECQ1-dependent manner.

Elevated *ISG15* might therefore be detrimental to cancer cells by causing DNA replication to continue in the presence of genotoxic drugs that would normally slow replication fork progression, resulting in genomic instability. Raso et al. found that cancer cells with high ISG15 levels were more sensitive to low doses of the chemotherapeutic agents camptothecin and cisplatin, because their replication forks continued unabated, leading to chromosome breakages and cell death.

"The increased activity of RECQ1 induced by high ISG15 levels may thus represent an important vulnerability that can be exploited for genotoxic anticancer treatments," Penengo says. "Furthermore, the evaluation of ISG15 levels in tumor samples may represent a predictive parameter to stratify patients in personalized cancer therapy."

Proximity ligation assays (magenta) show that ISG15 (red) associates with the DNA helicase RECQ1 (green) in cells, even when the cells express a mutant version of ISG15 (Δ GG) that cannot be covalently conjugated to other proteins.
 © 2020 Raso et al.

RESEARCHER DETAILS

Lorenza Penengo (Left)

Professor
 Institute of Molecular Cancer Research
 University of Zurich
penengo@imcr.uzh.ch

Maria Chiara Raso (right)

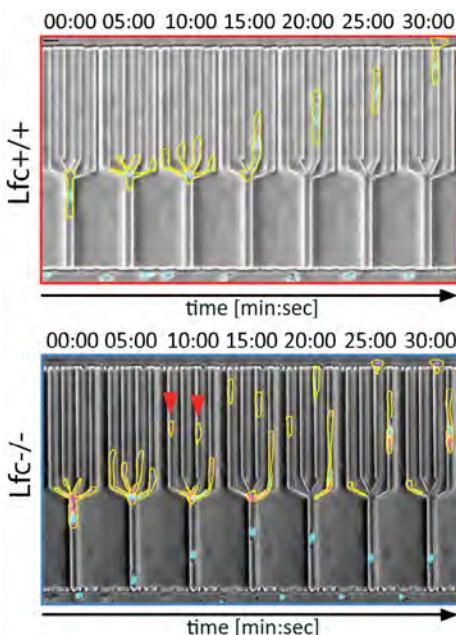
PhD student
 Institute of Molecular Cancer Research
 University of Zurich

ORIGINAL PAPER

Raso, M.C., N. Djoric, F. Walser, S. Hess, F.M. Schmid, S. Burger, K.-P. Knobeloch, and L. Penengo. 2020. Interferon-stimulated gene 15 accelerates replication fork progression inducing chromosomal breakage. *J. Cell Biol.* 219: e202002175.

<https://doi.org/10.1083/jcb.202002175>

MICROTUBULES HELP MIGRATING CELLS KEEP THEIR SHAPE


Dendritic cells coordinate their movement through complex microenvironments by using the local depolymerization of microtubules to trigger the actomyosin-mediated retraction of protrusions

Cells navigate through complex tissues by sending out multiple protrusions to explore different paths, but protrusions extending in the “wrong” direction must then be retracted so that the cell can move forward without becoming entangled with its surroundings. Migrating fibroblasts are thought to coordinate their protrusions using mechanical signals transmitted via actomyosin-based stress fibers associated with focal adhesions, whereas neutrophils and other small leukocytes may use plasma membrane tension to relay signals from one

protrusion to another.

How dendritic cells (DCs) control their shape as they surveil tissues for foreign antigens and deliver them to lymph nodes is unclear, however. DCs use an amoeboid mode of migration that is largely independent of adhesions and stress fibers, and they are too large and ramified for membrane tension to coordinate their protrusions. “We recently found that when DCs migrate through complex geometries, their nucleus acts as a mechanical gauge to lead them along the path of least resistance and the microtubule organizing center (MTOC), which is closely associated with the nucleus, is critical for this navigational task,” says Michael Sixt from the Institute of Science and Technology in Austria.

Sixt and colleagues, including co-corresponding author Eva

A wild-type DC (top) successfully navigates through a branched microfluidic channel after sending out multiple protrusions to explore the various pathways. A DC lacking Lfc (bottom) fails to properly retract its exploratory protrusions and undergoes fragmentation (red arrowheads). © 2020 Kopf et al.

Kiermaier and first author Aglaja Kopf, therefore wondered whether microtubules nucleated from the MTOC might control the shape of migrating DCs. The researchers found that, as the nucleus and associated MTOC move into one protrusion and guide the cell forward, protrusions pointing in other directions lose their microtubules and retract. “Upon passage of the MTOC, sheer geometry may determine that all but the leading protrusion are cut off from microtubule supply because microtubules are too inflexible to find their way into curved, narrow, and ramified spaces,” Kopf says.

Kopf et al. determined that the local depolymerization of microtubules triggers the retraction of protrusions. The Rho GTPase exchange factor GEF-H1/Lfc associates with microtubules and is released when they depolymerize, leading to the activation of actomyosin contractility and protrusion retraction. Depleting Lfc impaired DC migration, often causing the cells to fragment as they failed to retract their protrusions and became entangled in their surroundings.

“We propose that microtubules serve as an internal explorative system of the cell that informs actomyosin whenever a peripheral protrusion locates too distant from the centroid and thereby initiates its retraction,” Kiermaier says.

“We also found that DCs lacking both Lfc and microtubules have even more severe cell shape defects than cells lacking Lfc only, indicating that microtubule depolymerization induces cell retraction via additional modes that remain to be identified,” Sixt adds.

RESEARCHER DETAILS

Aglaja Kopf
Postdoctoral Researcher
CeMM Research Center
for Molecular Medicine
of the Austrian Academy
of Sciences

Eva Kiermaier
Professor
Life and Medical
Sciences Institute
University of Bonn
ekiermai@uni-bonn.de

Michael Sixt
Professor
Institute of Science and
Technology Austria
sixt@ist.ac.at

ORIGINAL PAPER

Kopf, A., J. Renkawitz, R. Hauschild, I. Girkontaite, K. Tedford, J. Merrin, O. Thorn-Seshold, D. Trauner, H. Häcker, K.-D. Fischer, E. Kiermaier, and M. Sixt. 2020. Microtubules control cellular shape and coherence in amoeboid migrating cells. *J. Cell Biol.* 219: e201907154.

<https://doi.org/10.1083/jcb.201907154>

TOOLS FOR DISCOVERY

Journal of Cell Biology (JCB) publishes advances in many area of basic cell biology as well as applied cellular advances in fields such as immunology, neurobiology, metabolism, microbiology, developmental biology, and plant biology. All editorial decisions on research manuscripts are made through collaborative consultation between professional editors with scientific training and academic editors who are active in the field. Established in 1955, JCB publishes 12 issues per year. www.jcb.org

Journal of Experimental Medicine (JEM) publishes papers providing novel conceptual insight into immunology, neuroscience, cancer biology, vascular biology, microbial pathogenesis, and stem cell biology. All editorial decisions are made by active scientists in conjunction with professional editors. Established in 1896, JEM publishes 12 issues per year. www.jem.org

Journal of General Physiology (JGP) publishes mechanistic and quantitative cellular and molecular physiology of the highest quality; provides a best in class author experience; and nurtures future generations of researchers. All editorial decisions on research manuscripts are made through a collaborative consultation between the Editor-in-Chief and Associate Editors, all of whom are active scientists. Established in 1918, JGP publishes 12 issues per year. www.jgp.org

Life Science Alliance (LSA) is a global, open-access, editorially independent, and peer-reviewed journal launched in 2018 by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences. www.lsajournal.org

Executive Director

Susan King

Associate Finance Director

Laura Bisberg

Director of Editorial Development

Teodoro Pulvirenti

Director of Publishing Technologies

Robert J. O'Donnell

Director of Communications and Marketing

Rory Williams

Institutional Sales Manager

Miguel Peralta

Executive Assistant to Executive Director;

Office Administrator

Demantie (Sati) Motieram

Financial Analyst

Sarah S. Kraft

Senior Science Writer

Ben Short

Marketing and Design Coordinator

Yuko Tonohira

Journal of Cell Biology (ISSN 0021-9525) is published monthly by Rockefeller University Press, 950 Third Avenue, New York, NY 10022. Periodical postage paid at New York, NY and additional mailing offices.

2021 Subscription Rates

Institutional Rates

	Tier 1	Tier 2	Tier 3	Tier 4
Online	\$2,670	\$3,390	\$4,160	\$5,320
Print + Online	\$5,930	\$6,610	\$7,180	\$9,170

For more information, please contact our subscription office.

Phone: +1 212-327-8590

email: subs@rockefeller.edu

Advertising Requests

Phone: 201-767-4170

email: rupads@rockefeller.edu

Permission Requests

email: permissions@rockefeller.edu

Media Requests

email: news@rockefeller.edu

Postmaster

Send address changes to *Journal of Cell Biology* Subscriptions, Rockefeller University Press, 950 Third Ave, 2nd Floor, New York, NY 10022.

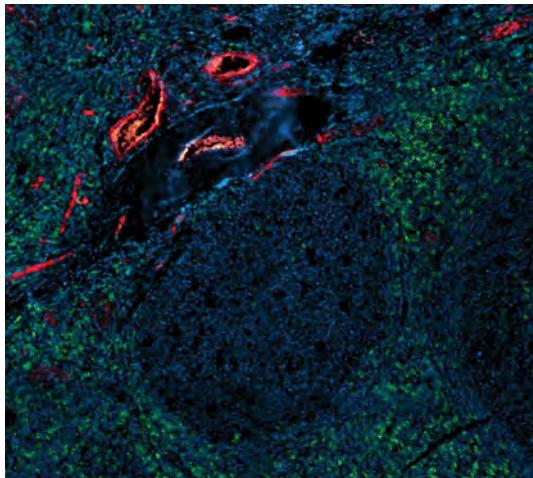
LEARN MORE AT RUPRESS.ORG

MAKE CONNECTIONS

Sign up for email alerts from *JCB* to stay informed of the latest discoveries and make connections that can impact your research.

CLICK HERE TO SIGN UP

Illuminate Microscopy With Fluorophore Antibody Conjugates


BioLegend offers one of the largest collections of antibodies, with thousands of targets for immunology, neuroscience, oncology, and stem cell research areas. These antibodies can be combined with several fluorophore options, providing directly conjugated primary antibodies for assays with reduced background. Alternatively, we provide secondary fluorophore-labeled reagents to amplify the signal of primary antibodies.

Quality-tested for IHC and ICC applications, our fluorophore options include:

- Spark YG™ 570: a new equivalent to Alexa Fluor® 555, Cy3, and TRITC.
- Alexa Fluor® 488, Alexa Fluor® 594, and Alexa Fluor® 647.
- Brilliant Violet 421™ and Brilliant Violet 510™.

Find thousands of antibody/fluorophore combinations at:
biolegend.com/en-us/microscopy

Vivid Antibody Staining for Multicolor Microscopy

Human paraffin-embedded tonsil tissue co-stained with anti-human PNA (clone MECA-79) Biotin, and anti-human CD8a (clone C8/144B) Alexa Fluor® 647 (green) followed by Streptavidin Spark YG™ 570 (red). Nuclei were counterstained with DAPI (blue).