

2019: THE YEAR IN
EXPERIMENTAL MEDICINE

WHY SUBMIT TO JEM?

92% OF INVITED
REVISIONS ARE
ACCEPTED

INITIAL DECISION
IN 6 DAYS

TIME IN PEER REVIEW
38 DAYS

FORMAT NEUTRAL

You may submit your papers in ANY format.

TRANSFER POLICY

We welcome submissions that include reviewer comments from another journal. You may also request manuscript transfer between Rockefeller University Press journals, and we can confidentially send reviewer reports and identities to another journal beyond RUP.

FAIR AND FAST

We limit rounds of revision, and we strive to provide clear, detailed decisions that illustrate what is expected in the revisions. Articles appear online one to two days after author proofs are returned.

OPEN ACCESS OPTIONS

Our options include Immediate Open Access (CC-BY) and open access six months after publication (CC-BY-NC-SA).

*Median 2019

An Editorial Process Guided by Your Community

At *JEM*, all editorial decisions on research manuscripts are made through collaborative consultation between professional scientific editors and the academic editorial board.

2019: THE YEAR IN EXPERIMENTAL MEDICINE

At the beginning of 2020, the start of a new decade, the *Journal of Experimental Medicine* (*JEM*) is proud to present our annual Year in Experimental Medicine collection to highlight some of the articles that were of greatest interest to our readers last year. The top 10 papers are selected by the editorial team and are based, in part, on the number of requests for PDF and full-text HTML versions of an article in the first three months after publication. These studies highlight the full breadth of *JEM*'s scope and our long-standing interest in original findings in disease pathogenesis.

We would like to thank our authors for contributing to *JEM*. It is our privilege to publish groundbreaking studies that broaden knowledge in immunology, host-pathogen interaction, cancer biology, cardiovascular biology, neuroscience, and other areas relevant to disease pathogenesis. In 2019, we celebrated the recipients of the Albert Lasker Basic Medical Research Award with a collection of *JEM* studies from Max D. Cooper (Emory University) and Jacques Miller (Walter and Eliza Hall Institute of Medical Research) that revolutionized our understanding of the adaptive immune system. Find this collection and many others at <https://rupress.org/JEM/collections>.

We are also grateful to our reviewers. See page 15 for a full list of those who contributed their time and expertise to ensure the publication of quality science in *JEM* in 2019.

Last but not least, we would like to thank our readers for their interest and continued support for *JEM*. We hope you will enjoy reading this collection.

- 5 CD4⁺ resident memory T cells mediate local immune response**
Study reveals that CD4 T_{RM} cells play a major role in immunosurveillance and local responses to reinfection
Lalit K. Beura ... David Masopust
- 6 A novel T cell subset controls IgE responses in humans**
A population of regulatory T cells in the follicles of human tonsils may prevent allergies by reducing IgE production
Pablo F. Cañete ... Carola G. Vinuesa
- 7 Patients with IL-6 receptor deficiency**
Loss-of-function mutations in human IL6R lead to recurrent infections, eczema, and abnormal inflammatory responses
Kaan Boztug, Joshua D. Milner, James E.D. Thaventhiran, et al.
- 8 Zika-associated birth defects may depend on mother's immune response**
Risk of developing fetal microcephaly is linked to the types of antibody produced by pregnant mothers in response to Zika infection
Davide F. Robbiani ... Michel C. Nussenzweig
- 9 Ferroptosis drives tuberculosis pathology**
Study finds that iron-induced cell death promotes tissue necrosis and facilitates mycobacterial spread
Eduardo P. Amaral ... Alan Sher
- 10 Secreted splice variants mediate resistance to anti-PD-L1 therapy**
Non-small cell lung cancers can acquire resistance to immunotherapy by producing soluble versions of PD-L1 that can act as decoys and prevent immune checkpoint blockade
Bo Gong ... Ryohei Katayama
- 11 Heterotypic spheroids drive ovarian cancer metastasis**
Fibroblasts and ascitic cancer cells form metastatic units that promote the dissemination of tumor cells throughout the abdominal cavity
Qinglei Gao, Zongyuan Yang, et al.
- 12 Aspirin may help some patients survive head and neck cancer**
By lowering prostaglandin E₂ levels, regular use of aspirin or other NSAIDs could prolong the life of patients with mutations in the PIK3CA gene
Matthew L. Hedberg, Noah D. Peyer, Julie E. Bauman ... Jennifer R. Grandis
- 13 Antibiotic treatment alleviates Alzheimer's disease symptoms in male mice**
By altering the gut microbiome, long-term antibiotic treatment reduces inflammation and slows the growth of amyloid plaques in male APPPS1-21 mice
Hemraj B. Dodiya ... Sangram S. Sisodia
- 14 Stroke drug may also prevent Alzheimer's disease**
The genetically engineered protein 3K3A-APC reduces amyloid deposition in mice by inhibiting transcription of BACE1
Divna Lazić, Abhay P. Sagare ... Berislav V. Zlokovic

Brochure articles by Ben Short, PhD

Design by Christine Candia

Cover art by Laura Avivar

On the cover Anti-tumor immune response. T cells attacking a cancer cell.

CONNECT WITH JEM

 @JExpMed

 Journal of Experimental Medicine

 @rockefeller_university_press

 jem@rockefeller.edu

www.jem.org

Executive Editor

Teodoro Puvirenti
phone (212) 327-8575
email: jem@rockefeller.edu

Editorial Board Co-Chairs

Carl Nathan
Michel Nussenzweig

Editors

Yasmine Belkaid
Jean-Laurent Casanova
Sara Cherry
David Holtzman
Susan Kaech
Lewis L. Lanier
Anne O'Garra
Emmanuelle Passegue
Alexander Rudensky
Arlene Sharpe
David Tuveson
Jedd D. Wolchok

Senior Scientific Editor

Shachi Bhatt

Scientific Editors

Stephanie Houston
Xin (Cindy) Sun
Gaia Trincucci

Editors Emeriti

William A. Muller
Alan Sher

Managing Editor

Sylvia F. Cuadrado
phone (212) 327-8575
email: jem@rockefeller.edu

Advisory Editors

Shizuo Akira	Vijay K. Kuchroo	Hans Schreiber
Kari Alitalo	Ralf Kuppers	Pamela Schwartzberg
Frederick W. Alt	Tomohiro Kurosaki	Charles N. Serhan
David Artis	Bart N. Lambrecht	Nilabh Shastri
K. Frank Austen	Ross Levine	Ethan M. Shevach
Albert Bendelac	Klaus F. Ley	Robert Siliciano
Christine A. Biron	Yong-Jun Liu	Roy L. Silverstein
Hal E. Broxmeyer	Clare Lloyd	Hergen Spits
Meinrad Busslinger	Tak Mak	Jonathan Sprent
Arturo Casadevall	Asrar Malik	Janet Stavnezer
Ajay Chawla	Bernard Malissen	Ulrich Steidl
Nicholas Chiorazzi	Philippa Marrack	Andreas Strasser
Robert L. Coffman	Diane Mathis	Helen Su
Myron I. Cybulsky	Ira Mellman	Joseph Sun
Glenn Dranoff	Miriam Merad	Stuart Tangye
Michael Dustin	Matthias Merkenschlager	Steven L. Teitelbaum
Elaine Dzierzak	Hanna Mikkola	Jenny Ting
Mikala Egeblad	Denise Monack	Kevin J. Tracey
Patricia Ernst	Sean J. Morrison	Giorgio Trinchieri
Richard A. Flavell	Muriel Moser	Shannon Turley
Paul Frenette	Daniel Mucida	Emil Unanue
Thomas Gajewski	Charles Mullighan	Valerie Weaver
Adolfo Garcia-Sastre	Cornelis Murre	Raymond M. Welsh
Patricia Gearhart	Linda Noble-Haeusslein	E. John Wherry
Ronald N. Germain	Jeffrey Noebels	Thomas Wynn
Daniel Geschwind	John J. O'Shea	Sayuri Yamazaki
Lucy Godley	Jack Parent	Leonard Zon
Margaret (Peggy) Goodell	Virginia Pascual	
Christopher Goodnow	Laura Pasqualucci	
Bertie Gottgens	Erika Pearce	
Florian Greten	Fiona Powrie	
Philippe Gros	Klaus Rajewsky	
Chyi Hsieh	Gwendalyn J. Randolph	
Christopher A. Hunter	Rino Rappuoli	
Luisa Iruela-Arispe	Jeffrey Ravetch	
Akiko Iwasaki	Nicholas Restifo	
Jos Jonkers	Nikolaus Romani	
Johanna Joyce	David L. Sacks	
Thirumala-Devi Kanneganti	Shimon Sakaguchi	
Gerard Karsenty	Matthew D. Scharff	
Jay Kolls	Olaf Schneewind	
Paul Kubes	Stephen P. Schoenberger	

Hans Schreiber

Pamela Schwartzberg

Charles N. Serhan

Nilabh Shastri

Ethan M. Shevach

Robert Siliciano

Roy L. Silverstein

Hergen Spits

Jonathan Sprent

Janet Stavnezer

Ulrich Steidl

Andreas Strasser

Helen Su

Joseph Sun

Stuart Tangye

Steven L. Teitelbaum

Jenny Ting

Kevin J. Tracey

Giorgio Trinchieri

Shannon Turley

Emil Unanue

Valerie Weaver

Raymond M. Welsh

E. John Wherry

Thomas Wynn

Sayuri Yamazaki

Leonard Zon

Monitoring Editors

Marco Colonna
Jason Cyster
Stephen Hedrick
Kristin A. Hogquist
Andrew McMichael
Luigi Notarangelo
Federica Sallusto
Toshio Suda

Consulting Biostatistical

Editor

Xi Kathy Zhou

Senior Preflight Editor

Laura Smith

Preflight Editor

Rochelle Ritacco

Assistant Production Editor

Andrew Lo Bello

Production Editor

Jennifer McCullum

Production Manager

Camille Clowery

Production Designer

Erinn A. Grady

Copyright to articles published in this journal is held by the authors. Articles are published by Rockefeller University Press under license from the authors. Conditions for reuse of the articles by third parties are listed at <http://www.rupress.org/terms>

Print ISSN 0022-1007

Online ISSN 1540-9538

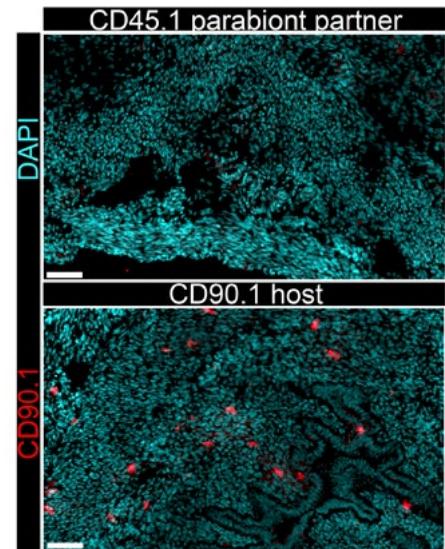
Rockefeller University Press

CD4⁺ RESIDENT MEMORY T CELLS MEDIATE LOCAL IMMUNE RESPONSE

Study reveals that CD4 T_{RM} cells play a major role in immunosurveillance and local responses to reinfection

Naïve T cells largely patrol the body by circulating through secondary lymphoid organs. In contrast, CD8⁺ memory T cells that have previously been exposed to their cognate antigen are abundant enough to permanently station themselves in various nonlymphoid tissues, becoming resident memory T cells (T_{RM}) that can mediate local immunosurveillance and detect any reinfections.

"The extent to which residence contributes to global memory CD4⁺ T cell surveillance is less clear," explains David Masopust of the University of Minnesota. "There have been fewer studies on the surveillance patterns of CD4⁺ T cells, and they have produced varied conclusions or indicated a more complex situation."


Masopust and colleagues, including first author Lalit Beura, performed a comprehensive analysis of the CD4⁺ memory T cells formed in mice exposed to lymphocytic choriomeningitis virus (LCMV). CD4⁺ memory T cells recognizing this virus were broadly distributed in both lymphoid and nonlymphoid tissues, as well as in the blood. In the case of nonlymphoid tissues, most CD4⁺ memory T cells appeared to be resident cells conducting local immunosurveillance. These CD4⁺ T_{RM} cells were reactivated upon exposure to further LCMV antigen, triggering a rapid, local immune response by components of

both the innate and adaptive immune systems. The researchers saw a similarly prominent role for CD4⁺ T_{RM} cells in mice exposed to an array of natural pathogens.

Beura et al. found that CD4⁺ T_{RM} cells share many phenotypic characteristics with CD8⁺ T_{RM} cells residing in the same tissue. Transcriptional profiling revealed that, though CD4⁺ T_{RM} cells from different tissues have distinct gene expression patterns, they share a common transcriptional signature that distinguishes them from circulating CD4⁺ T cells. Remarkably, a similar residence signature can also be found in CD8⁺ T_{RM} cells residing in diverse tissues.

"Taken together, these results reveal a shared gene signature of tissue residence that transcends anatomical location and T cell lineage," says Beura. "We propose at least three axes of differentiation for memory T cells: one driven by the specific tissue microenvironment, one driven by lineage (CD4⁺ vs. CD8⁺), and one coupled to whether the cells are tissue resident or recirculating."

"Our paper highlights the dominance of resident-mediated CD4⁺ T cell immunosurveillance, and indicates that further studies of CD4⁺ T_{RM} biology will be important to our understanding of immune responses throughout the body," Masopust says.

Staining of mucosal tissue from two mice parabiotically connected for several weeks after LCMV infection shows that CD4⁺ memory T cells (red) remain in their original host and do not spread to the other animal, indicating that they are tissue-resident rather than circulating cells.

Credit: Beura et al., 2019

RESEARCHER DETAILS

Lalit K. Beura
Postdoctoral Associate; University of Minnesota; (Currently an Assistant Professor at Brown University)

David Masopust
Professor; University of Minnesota; masopust@umn.edu

ORIGINAL PAPER

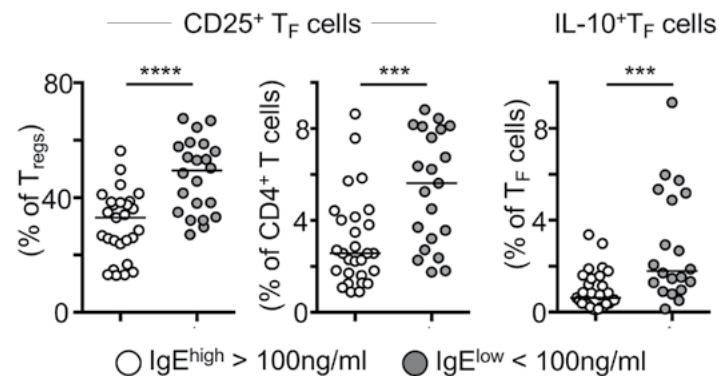
Beura, L.K., N.J. Fares-Frederickson, E.M. Steinert, M.C. Scott, E.A. Thompson, K.A. Fraser, J.M. Schenkel, V. Vezys, and D. Masopust. 2019. CD4⁺ resident memory T cells dominate immunosurveillance and orchestrate local recall responses. *J. Exp. Med.* 216:1214–1229.

<https://doi.org/10.1084/jem.20181365>

A NOVEL T CELL SUBSET CONTROLS IgE RESPONSES IN HUMANS

A population of regulatory T cells in the follicles of human tonsils may prevent allergies by reducing IgE production

Antibody responses must be carefully calibrated to ensure maximal protection against pathogens while avoiding excessive inflammation, autoimmune reactions, or, in the case of IgE-mediated antibody responses, allergic reactions and anaphylaxis. In the follicles of secondary lymphoid organs, the differentiation of antibody-producing B cells is facilitated by follicular helper T (T_{FH}) cells. At least in mice, this activity is counteracted by follicular regulatory T (T_{FR}) cells that can reduce antibody production by suppressing both T_{FH} and B cell function. But whether a similar population of repressive cells exists in humans is unclear.


"In an effort to identify the human equivalent of mouse T_{FR} cells, we examined cells in the most accessible human secondary lymphoid tissue: the tonsils," says Carola Vinuesa, a professor at The Australian National University in Canberra.

Vinuesa and colleagues, including first author Pablo Cañete, identified a population of CD25⁺ follicular T (T_F) cells in human tonsils that secrete abundant amounts of IL-10, a cytokine expressed by mouse T_{FR} cells. Unlike mouse T_{FR} cells, however, these human CD25⁺ T_F cells did not express the transcription factor FOXP3, which is generally considered to be a master regulator of regulatory T cell function.

Yet the cells expressed other crucial markers of regulatory T cells and were able to suppress T cell proliferation, suggesting they could perform a regulatory function. Moreover, RNA sequencing revealed that, aside from FOXP3 expression, human CD25⁺ T_F cells had a similar transcriptional profile to mouse T_{FR} cells.

The researchers determined that CD25⁺ T_F cells can suppress T_{FH} function in vitro. And, though they moderately promote the proliferation and differentiation of B cells, CD25⁺ T_F cells repress class switching to IgE in an IL-10-dependent manner. Accordingly, Vinuesa and colleagues found that children with high numbers of IL-10-producing CD25⁺ T_F cells in their tonsils had lower levels of IgE in their blood, whereas those with lower CD25⁺ T_F cell numbers displayed high IgE titers.

"Because this T cell subset is particularly abundant in the tonsils, which are con-

The frequency of IL-10-producing CD25⁺ T_F cells in the tonsils is higher in children with low serum IgE levels than in children with high IgE titers.

Credit: Cañete et al., 2019

stantly exposed to inhaled and ingested molecules, we think that these cells may be important to prevent IgE-mediated allergic reactions to harmless foreign antigens," Cañete explains.

"We therefore predict that deficiencies in this T cell subset could underpin susceptibility to allergic and anaphylactic reactions induced by inhaled and ingested antigens," Vinuesa adds. "Should this be the case, our findings may open up new avenues for boosting CD25⁺ T_F cells to reduce the risk of allergy."

RESEARCHER DETAILS

Carola G. Vinuesa

Professor; The John Curtin School of Medical Research; The Australian National University; carola.vinuesa@anu.edu.au

Pablo F. Cañete

Postdoctoral Fellow; The John Curtin School of Medical Research; The Australian National University

ORIGINAL PAPER

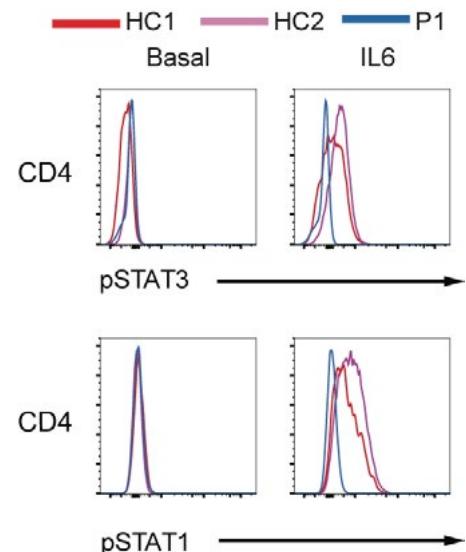
Cañete, P.F., R.A. Sweet, P. Gonzalez-Figueroa, I. Papa, N. Ohkura, H. Bolton, J.A. Roco, M. Cuenca, K.J. Bassett, I. Sayin, E. Barry, A. Lopez, D.H. Canaday, M. Meyer-Hermann, C. Doglioni, B. Fazekas de St Groth, S. Sakaguchi, M.C. Cook, and C.G. Vinuesa. 2019. Regulatory roles of IL-10-producing human follicular T cells. *J. Exp. Med.* 216:1843–1856.

<https://doi.org/10.1084/jem.20190493>

PATIENTS WITH IL-6 RECEPTOR DEFICIENCY

Loss-of-function mutations in human *IL6R* lead to recurrent infections, eczema, and abnormal inflammatory responses

The proinflammatory cytokine IL-6 induces cell growth and proliferation by binding to its receptor, IL-6R, forming a complex that can associate with the membrane glycoprotein GP130 and activate a signaling pathway that leads to the nuclear import of STAT transcription factors. Excess IL-6 causes a variety of inflammatory diseases, and tocilizumab, an antibody that blocks the IL-6 receptor, is an effective treatment for several of these conditions, including rheumatoid arthritis.


"However, while the consequences of excessive IL-6 signaling in humans have been well established, the consequences of impairment have been more elusive," says James Thaventhiran, a research scientist at the Medical Research Council Toxicology Unit, University of Cambridge. Patients with loss-of-function mutations in the genes encoding GP130 or STAT3 are susceptible to recurrent infections, are prone to eczema and other allergic disorders, and suffer from a variety of skeletal and connective tissue abnormalities. But, because GP130 and STAT3 are also components of several other signaling pathways, the contribution of diminished IL-6 signaling to these symptoms is unclear.

Thaventhiran and colleagues, including co-corresponding authors Kaan Boztug of the Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, and

Joshua Milner of the National Institute of Allergy and Infectious Diseases (now at Columbia University), identified two unrelated patients with loss-of-function mutations in the gene encoding IL-6R. Both patients suffered from recurrent bacterial infections of the skin and lung that were accompanied by abnormally low levels of inflammation (including reduced levels of the IL-6-induced acute-phase protein CRP). The patients also displayed elevated IgE levels and suffered from allergic diseases including eczema.

"Aspects of these patients' clinical phenotype—particularly their elevated IgE, atopic dermatitis, and susceptibility to staphylococcal infections—are shared by patients with mutations in the genes encoding STAT3, GP130, and ZNF341 (a transcription factor that regulates STAT3 levels)," says Boztug.

The patients with *IL6R* mutations did not, however, show any skeletal or connective tissue defects. "Our results therefore clarify the contribution of deficient IL-6 signaling to the phenotype of patients with loss-of-function mutations in *GP130*, *STAT3*, or *ZNF341*," says Milner. "This may indicate novel therapeutics for the alleviation of some of these patients' symptoms, such as using recombinant soluble IL-6R to increase the presentation of IL-6 to GP130. It is surprising, though, that a receptor which can contribute to so many other

Fluorescence histograms show that, compared with cells from two healthy controls (HC1 and HC2), IL-6-induced phosphorylation of STAT3 and STAT1 is absent in the CD4⁺ T cells of a patient with a null mutation in *IL6R* (P1).

Credit: Spencer et al., 2019

RESEARCHER DETAILS

Kaan Boztug

Director, Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases; Scientific Director, St. Anna Children's Cancer Research Institute; kaan.boztug@rudlbg.ac.at

Joshua D. Milner

Chief, Laboratory of Allergic Diseases; National Institute of Allergy and Infectious Diseases, National Institutes of Health; joshua.milner@nih.gov

James E.D. Thaventhiran

Rutherford Fellow; Medical Research Council Toxicology Unit; University of Cambridge; jedt2@mrc-tox.cam.ac.uk

ORIGINAL PAPER

Spencer, S., S. Köstel Bal, W. Egner, H. Lango Allen, S.I. Raza, C.A. Ma, M. Gürel, Y. Zhang, G. Sun, R.A. Sabroe, D. Greene, W. Rae, T. Shahin, K. Kania, R.C. Ardy, M. Thian, E. Staples, A. Peccia-Bekkum, W.P.M. Worrall, J. Stephens, M. Brown, S. Tuna, M. York, F. Shackley, D. Kerrin, R. Sargur, A. Condliffe, H.N. Tipu, H.S. Kuehn, S.D. Rosenzweig, E. Turro, S. Tavaré, A.J. Thrasher, D.I. Jodrell, K.G.C. Smith, K. Boztug, J.D. Milner, and J.E.D. Thaventhiran. 2019. Loss of the interleukin-6 receptor causes immunodeficiency, atopy, and abnormal inflammatory responses. *J. Exp. Med.* 216:1986–1998.

<https://doi.org/10.1084/jem.20190344>

ZIKA-ASSOCIATED BIRTH DEFECTS MAY DEPEND ON MOTHER'S IMMUNE RESPONSE

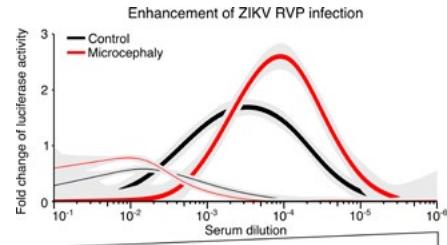
Risk of developing fetal microcephaly is linked to the types of antibody produced by pregnant mothers in response to Zika infection

The Zika virus is spread by mosquitoes in tropical and subtropical regions, and, in most adults, the symptoms of infection, if any, are fairly mild. But the widespread Zika outbreak in Brazil in 2015–2016 revealed that infection during pregnancy can cause a wide range of fetal abnormalities, with microcephaly occurring in around 5% of live births by Zika-infected mothers.

"Why some Zika virus-infected pregnant women deliver apparently healthy newborns while others have babies with microcephaly is unknown," says Davide Robbiani from The Rockefeller University in New York.

Various factors have been proposed to increase the risk of microcephaly, including previous exposure to viruses that are similar to Zika, such as dengue virus or West Nile virus. Antibodies generated by the body's immune system to combat these viruses may recognize the Zika virus but, instead of neutralizing it, help it to enter the mother's cells and possibly cross the placenta to infect the unborn fetus.

Robbiani and colleagues, including co-senior author Michel Nussenzweig, worked with researchers and physicians in Brazil to analyze blood samples collected during the 2015–2016 outbreak from Zika-infected mothers who had given birth to either


apparently healthy or microcephalic children.

Through a series of laboratory tests, the researchers saw no significant differences in the antibodies produced against dengue or other Zika-related viruses, suggesting that prior exposure to these pathogens does not increase the risk of Zika-associated birth defects.

However, when Robbiani and colleagues analyzed the activity of antibodies produced against the Zika virus itself, they saw several differences in the antibodies produced by the mothers of babies with microcephaly. Antibodies from these mothers were actually more effective at neutralizing the Zika virus than the antibodies produced by mothers of healthy newborns. In addition, in a different assay, these antibodies showed an enhanced ability to boost the entry of Zika virus into human cells grown in the laboratory.

The researchers confirmed their findings in macaques infected with the Zika virus. Pregnant monkeys that produced more of the antibodies capable of enhancing viral entry into cells were more at risk of giving birth to babies suffering from Zika-induced brain damage.

"Though our results only show a correlation at this point, they suggest that

Anti-Zika antibodies from mothers whose children developed microcephaly (red) enhance the infectious activity of luciferase-labeled Zika reporter viruses more strongly than antibodies from mothers whose children developed normally (black).


Credit: Robbiani et al., 2019

antibodies may be implicated in Zika fetal disease," Robbiani says. "Antibodies may exist that, instead of protecting, enhance the risk of microcephaly, so the next step will be to figure out which antibodies are responsible for this, and how they promote fetal damage. This has significant implications for vaccine development; a safe Zika vaccine would have to selectively elicit antibodies that are protective, while avoiding those that potentially enhance the risk of microcephaly."

RESEARCHER DETAILS

Davide F. Robbiani
Research Associate Professor; The Rockefeller University; robbiani@rockefeller.edu
Photos courtesy of The Rockefeller University

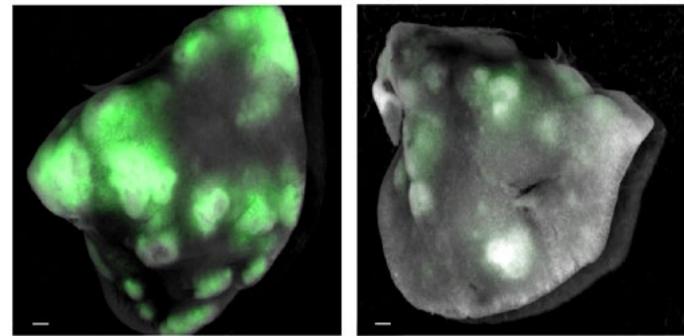
Michel C. Nussenzweig
Zanvil A. Cohn and Ralph M. Steinman Professor; The Rockefeller University; Investigator, Howard Hughes Medical Institute; nussen@rockefeller.edu

ORIGINAL PAPER

Robbiani, D.F., P.C. Olsen, F. Costa, Q. Wang, T.Y. Oliveira, N. Nery, A. Aromolaran, M.S. do Rosário, G.A. Sacramento, J.S. Cruz, R. Khouri, E.A. Wunder, A. Mattos, B. de Paula Freitas, M. Sarno, G. Archangelo, D. Daltro, G.B.S. Carvalho, K. Pimentel, I.C. de Siqueira, J.R.M. da Almeida, D.F. Henriques, J.A. Lima, P.F.C. Vasconcelos, D. Schaefer-Babajew, S.A. Azzopardi, L. Bozzacco, A. Gazumyan, R. Belfort, A.P. Alcântara, G. Carvalho, L. Moreira, K. Araujo, M.G. Reis, R.I. Keesler, L.L. Coffey, J. Tisoncik-Go, M. Gale, L. Rajagopal, K.M. Adams Waldorf, D.M. Dudley, H.A. Simmons, A. Mejia, D.H. O'Connor, R.J. Steinbach, N. Haese, J. Smith, A. Lewis, L. Colgin, V. Roberts, A. Fries, M. Kelleher, A. Hirsch, D.N. Streblow, C.M. Rice, M.R. MacDonald, A.R.P. de Almeida, K.K.A. Van Rompay, A.I. Ko, and M.C. Nussenzweig. 2019. Risk of Zika microcephaly correlates with features of maternal antibodies. *J. Exp. Med.* 216:2302–2315. <https://doi.org/10.1084/jem.20191061>

FERROPTOSIS DRIVES TUBERCULOSIS PATHOLOGY

Study finds that iron-induced cell death promotes tissue necrosis and facilitates mycobacterial spread


The World Health Organization estimates that tuberculosis killed 1.5 million people worldwide in 2018, the highest death toll for any disease caused by a single infectious agent. New approaches to treating the disease could involve targeting the host cell pathways triggered by *Mycobacterium tuberculosis* (Mtb) infection. For example, macrophages infected with Mtb can undergo necrosis, a proinflammatory form of cell death that contributes to tissue damage and may facilitate bacterial spread by releasing Mtb into the surrounding tissue.

There are, however, several different modes of necrosis with their own distinct triggers and effector molecules, and the precise pathways induced by Mtb infection have remained unclear. One recently discovered necrotic pathway is ferroptosis, in which elevated iron levels induce the production of hydrogen peroxides that react with membrane lipids to form toxic lipid peroxides capable of disrupting the plasma membrane. "Since iron overload is also known to promote tuberculosis under certain conditions, we wondered whether ferroptosis plays a role in the necrotic cell death and tissue necrosis triggered by Mtb infection," explains Alan Sher, a researcher at the National Institute of Allergy and Infectious Diseases.

Sher and colleagues, including first author Eduardo Amaral, examined mouse macrophages infected with Mtb and found that their necrotic death was accompanied by increases in intracellular iron and mitochondrial superoxide levels, as well as lipid peroxidation. Moreover, Mtb infection suppressed the expression of Gpx4, an enzyme that can reduce lipid peroxides and limit their toxic effects on the cell.

"The Mtb-induced death of macrophages *in vitro* therefore exhibits the major hallmarks of ferroptosis," Amaral says. Accordingly, treating these cells with an iron chelator or a ferroptosis inhibitor called ferrostatin-1 prevented their death upon Mtb infection.

Amaral et al. saw similar effects *in vivo*. Mice infected with Mtb showed a decrease in macrophage Gpx4 expression and an increase in lipid peroxide levels. Treatment with ferrostatin-1 suppressed pulmonary necrosis in

Sytox Green staining of lung tissue from Mtb-infected mice shows that, compared with a vehicle-treated control (left), tissue necrosis is reduced upon treatment with the ferroptosis inhibitor ferrostatin-1 (right).

Credit: Amaral et al., 2019

these animals and reduced bacterial numbers in both the lungs and spleens, strongly suggesting that ferroptosis is critical to the spread of Mtb. "Clearly, further preclinical studies are required to validate ferroptosis as a viable target for host-directed therapy of active tuberculosis," Sher says. "But the potential to simultaneously lessen tissue damage while reducing pathogen burden and dissemination is an attractive aspect of this strategy."

RESEARCHER DETAILS

Alan Sher

Deputy Chief, Laboratory of Parasitic Diseases; Chief, Immunobiology Section; National Institute of Allergy and Infectious Diseases, National Institutes of Health; asher@nih.gov

Eduardo P. Amaral

Visiting Fellow; National Institute of Allergy and Infectious Diseases; National Institutes of Health; eduardo.amaral@nih.gov

ORIGINAL PAPER

Amaral, E.P., D.L. Costa, S. Namasivayam, N. Riteau, O. Kamenyeva, L. Mittereder, K.D. Mayer-Barber, B.B. Andrade, and A. Sher. 2019. A major role for ferroptosis in *Mycobacterium tuberculosis*-induced cell death and tissue necrosis. *J. Exp. Med.* 216:556–570.

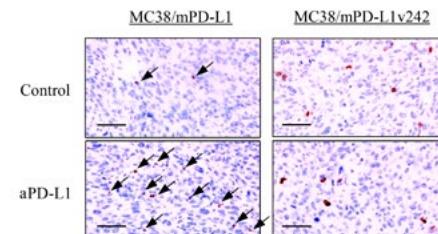
<https://doi.org/10.1084/jem.20181776>

SECRETED SPLICE VARIANTS MEDIATE RESISTANCE TO ANTI-PD-L1 THERAPY

Non-small cell lung cancers can acquire resistance to immunotherapy by producing soluble versions of PD-L1 that can act as decoys and prevent immune checkpoint blockade

Many tumor cells evade the immune system by expressing high levels of the transmembrane protein PD-L1, which binds to its receptor, PD-1, on the surface of cytotoxic T cells and activates an immune checkpoint that inhibits T cell function. Therapeutic antibodies that prevent this checkpoint by binding to PD-1 or PD-L1 have proven to be beneficial treatments for a variety of cancers, from melanoma to non-small cell lung cancer (NSCLC).

"However, the incidence of acquired resistance to PD-1 and PD-L1 blocking antibodies is increasing," says Ryohei Katayama from the Japanese Foundation for Cancer Research in Tokyo. "Several groups have described mechanisms underlying resistance to PD-1 blockade, but the mechanisms surrounding resistance to anti-PD-L1 treatment remain poorly understood."


Katayama's team, including first author Bo Gong, analyzed two NSCLC patients who initially responded to anti-PD-L1 treatment before undergoing a relapse and found that their relapsed tumors expressed splice variants of PD-L1 that lacked the protein's transmembrane domain. These splice variants are therefore secreted from cells, leading to high levels of soluble PD-L1 in the patients' blood and lung fluid. The same

variants were also found in another 2 of 15 cancer patients who had acquired resistance to anti-PD-L1 therapy.

"We hypothesized that the secreted variants act as decoys that attenuate the neutralizing activity of anti-PD-L1 antibodies," says Gong. Indeed, the researchers found that soluble PD-L1 was able to compete for anti-PD-L1 antibodies, preventing them from binding to cell surface PD-L1 and reactivating T cells in vitro.

To test the effects of soluble PD-L1 in vivo, Katayama and colleagues injected mice with murine cancer cells expressing a secreted PD-L1 splice variant and found that the tumors formed by these cells were more resistant to anti-PD-L1 therapy. In fact, the researchers found, only 1% of cells need to express soluble PD-L1 for the tumor to be resistant to PD-L1 blockade. However, the tumors remained susceptible to anti-PD-1 antibodies, suggesting that these could be used as an alternative treatment for patients resistant to anti-PD-L1 therapy.

"Taken together, our findings suggest that the presence of soluble PD-L1 splicing variants or the level of soluble PD-L1 in plasma or pleural effusion may work as a biomarker to predict a patient's response to PD-L1 blockade

Immune checkpoint blockade with anti-PD-L1 antibodies (bottom row) causes cytotoxic T cells expressing granzyme B (arrows) to accumulate in tumors overexpressing full-length membrane-bound PD-L1 (left). But tumors overexpressing soluble PD-L1 are resistant to anti-PD-L1 treatment (right).

Credit: Gong et al., 2019

therapy and that anti PD-1 antibody treatment could be a therapeutic option to overcome soluble PD-L1 variant-induced resistance," Katayama says.

RESEARCHER DETAILS

Ryohei Katayama

Chief, Division of Experimental Chemotherapy; Cancer Chemotherapy Center; Japanese Foundation for Cancer Research; ryohei.katayama@jfcr.or.jp

Bo Gong

Postdoctoral researcher; Division of Experimental Chemotherapy; Cancer Chemotherapy Center; Japanese Foundation for Cancer Research

ORIGINAL PAPER

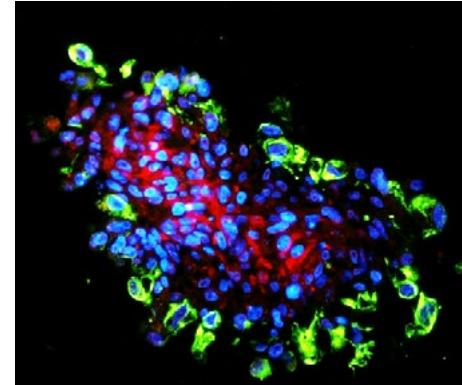
Gong, B., K. Kiyotani, S. Sakata, S. Nagano, S. Kumehara, S. Baba, B. Besse, N. Yanagitani, L. Friboulet, M. Nishio, K. Takeuchi, H. Kawamoto, N. Fujita, and R. Katayama. 2019. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. *J. Exp. Med.* 216:982-1000.

<https://doi.org/10.1084/jem.20180870>

HETEROTYPIC SPHEROIDS DRIVE OVARIAN CANCER METASTASIS

Fibroblasts and ascitic cancer cells form metastatic units that promote the dissemination of tumor cells throughout the abdominal cavity

High-grade serous ovarian cancer (HGSOC)—the most aggressive form of ovarian cancer—is characterized by the early and rapid dissemination of cancer cells to other sites within the abdomen. Cancer cells that escape from the primary tumor are thought to form spheroids in the ascitic fluid that accumulates in HGSOC patients. These spheroids can then attach to the peritoneal membrane that lines the abdominal cavity and invade the underlying extracellular matrix to form secondary, metastatic tumors.


"Given the proposed function of spheroids during ovarian cancer metastasis, we wanted to investigate the processes by which ascitic tumor cells (ATCs) assemble into spheroids and execute peritoneal dissemination," says Qinglei Gao from Tongji Medical College, Huazhong University of Science and Technology in Wuhan, China.

Gao and colleagues, including co-first author Zongyuan Yang, found that ATCs from HGSOC patients tend to form heterotypic spheroids with cancer-associated fibroblasts (CAF) present in the ascites. These CAFs protect the cancer cells from apoptosis and facilitate their invasion of the peritoneum, eventually forming the stroma of the newly formed metastases. "Due to their inherent malignant potential and contribution to peritoneal dissemination, we termed

these CAF-containing heterospheroid structures metastatic units," Gao says. "Intriguingly, stromal fibroblasts and the resultant heterospheroids are rarely found in low-grade serous ovarian cancer, which might explain its reduced tendency for dissemination."

Gao's team determined that ATCs from HGSOC patients express high amounts of integrin $\alpha 5$, a cell adhesion molecule whose levels correlate with poor patient outcomes. The researchers found that integrin $\alpha 5$ mediates the association of ATCs with fibroblasts during spheroid formation and that EGF secreted from these fibroblasts subsequently helps to sustain integrin $\alpha 5$ expression. Inhibiting this signaling pathway with a neutralizing anti-EGF antibody impaired spheroid formation and reduced peritoneal tumor burden in mice injected with both ATCs and CAFs.

Gao et al.'s results suggest that targeting CAFs could prevent metastasis in HGSOC patients. The researchers found that early administration of imatinib, a tyrosine kinase inhibitor that can eliminate CAFs by blocking PDGF signaling, reduced tumor burden and improved survival in a mouse model of metastatic ovarian cancer. This treatment was even more effective when combined with liposome clodronate to additionally eliminate tumor-associated macrophages, which have also been

Heterotypic spheroids consisting of epithelial cancer cells (green) surrounding a core of fibroblasts (red) form in the ascites of HGSOC patients. These spheroids act as metastatic units that facilitate the dissemination of ovarian cancer cells throughout the abdominal cavity.

Credit: Gao et al., 2019

reported to promote spheroid formation in ovarian cancer.

"Together, our results suggest that early targeting of stromal CAFs to destroy metastatic units could be a new therapeutic strategy to limit HGSOC progression," Gao says.

RESEARCHER DETAILS

Qinglei Gao

Professor; Tongji Medical College; Huazhong University of Science and Technology;
qingleigao@hotmail.com

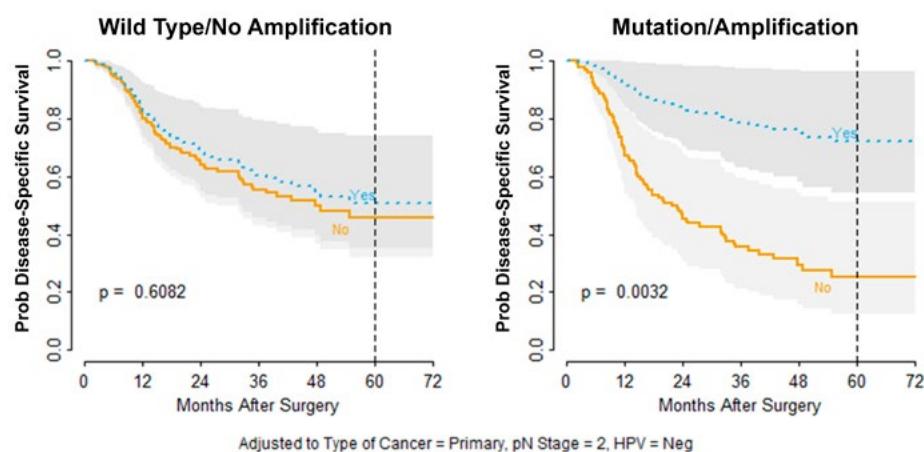
Zongyuan Yang

Attending doctor, Assistant research fellow; Tongji Medical College; Huazhong University of Science and Technology

ORIGINAL PAPER

Gao, Q., Z. Yang, S. Xu, X. Li, X. Yang, P. Jin, Y. Liu, X. Zhou, T. Zhang, C. Gong, X. Wei, D. Liu, C. Sun, G. Chen, J. Hu, L. Meng, J. Zhou, K. Sawada, R. Fruscio, T.W. Grunt, J. Wischhusen, V.M. Vargas-Hernández, B. Pothuri, and R.L. Coleman. 2019. Heterotypic CAF-tumor spheroids promote early peritoneal metastasis of ovarian cancer. *J. Exp. Med.* 216: 688–703.

<https://doi.org/10.1084/jem.20180765>


ASPIRIN MAY HELP SOME PATIENTS SURVIVE HEAD AND NECK CANCER

By lowering prostaglandin E₂ levels, regular use of aspirin or other NSAIDs could prolong the life of patients with mutations in the *PIK3CA* gene

Head and neck squamous cell carcinoma (HNSCC) accounts for about 4% of all cancers in the United States and continues to have high rates of patient mortality. Risk factors for HNSCC include smoking, alcohol use, and human papillomavirus infection, but several studies have shown that regular use of aspirin can reduce the risk of developing the disease. However, whether aspirin or other nonsteroidal anti-inflammatory drugs (NSAIDs) can promote the survival of patients who have already developed HNSCC is unclear; studies investigating this question have so far produced conflicting results.

One possibility is that NSAIDs are only effective against some types of HNSCC. Around 35% of HNSCC tumors carry mutations that activate the *PIK3CA* gene, which encodes the catalytic subunit of the signaling enzyme PI3K α . Researchers led by Professor Jennifer Grandis at the University of California, San Francisco, investigated whether regular NSAID use specifically improved the survival of HNSCC patients with alterations in the *PIK3CA* gene.

The researchers analyzed a group of 266 HNSCC patients who had had their tumors surgically removed and, in most cases, were then treated with adjuvant chemotherapy and/or radiotherapy. Patients without any alterations in their *PIK3CA* gene were no better off if they also took NSAIDs on a regular basis (defined as two or more doses per week for at least six months). By contrast, regular NSAID usage dramatically enhanced the survival of patients whose *PIK3CA* gene was mutated and/or

Compared with no or occasional NSAID usage (orange lines), regular NSAID use (blue lines) had no effect on the survival of HNSCC patients with wild-type *PIK3CA* (left), but dramatically increased the survival of patients with a mutated or amplified *PIK3CA* gene (right).

Credit: Hedberg et al., 2019

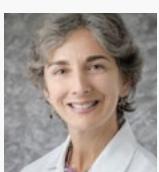
amplified. Among these patients, NSAIDs increased the overall five-year survival rate from 25% to 78%.

NSAIDs also inhibited tumor growth in mice injected with cancer cells harboring a mutant *PIK3CA* gene. By analyzing these mice, Grandis and colleagues found that NSAIDs likely inhibit tumor growth by reducing the production of prostaglandin E₂. This proinflammatory molecule has been implicated in a variety of cancers and can be induced by the PI3K α signaling pathway. NSAIDs may therefore also be effective against a variety of cancers that contain activating mutations in *PIK3CA*. Indeed, previous

studies have shown that regular aspirin usage can aid the survival of colorectal cancer patients carrying mutated *PIK3CA*.

"The present study is the first to demonstrate that regular NSAID usage confers a significant clinical advantage in patients with *PIK3CA*-altered HNSCC," Grandis says. "Inconsistencies in the type, timing, and dosages of NSAIDs taken by patients in this study limit our ability to make specific therapeutic recommendations. But the magnitude of the apparent advantage, especially given the marked morbidity and mortality of this disease, warrants further study in a prospective, randomized clinical trial."

RESEARCHER DETAILS


Matthew L. Hedberg
MD-PhD student;
University of
Pittsburgh School of
Medicine

Noah D. Peyser
Project manager;
University of Califor-
nia, San Francisco

Julie E. Bauman
Professor of Med-
icine; University of
Arizona

Jennifer R. Grandis
American Cancer
Society Professor;
University of Califor-
nia, San Francisco
jennifer.grandis@ucsf.edu

ORIGINAL PAPER

Hedberg, M.L., N.D. Peyser, J.E. Bauman, W.E. Gooding, H. Li, N.E. Bhola, T.R. Zhu, Y. Zeng, T.M. Brand, M.-O. Kim, R.C.K. Jordan, S. VandenBerg, V. Olivas, T.G. Bivona, S.I. Chiosea, L. Wang, G.B. Mills, J.T. Johnson, U. Duvvuri, R.L. Ferris, P. Ha, D.E. Johnson, and J.R. Grandis. 2019. Use of nonsteroidal anti-inflammatory drugs predicts improved patient survival for *PIK3CA*-altered head and neck cancer. *J. Exp. Med.* 216:419-427.

<https://doi.org/10.1084/jem.20181936>

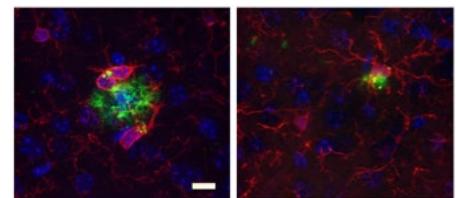
ANTIBIOTIC TREATMENT ALLEVIATES ALZHEIMER'S DISEASE SYMPTOMS IN MALE MICE

By altering the gut microbiome, long-term antibiotic treatment reduces inflammation and slows the growth of amyloid plaques in male APPS1-21 mice

The community of bacteria that live in the gastrointestinal tract—the gut microbiome—is generally harmless, but, because they affect the activity of the body's immune system, these bacteria can influence a wide range of diseases, even in distant tissues such as the brain.

"Recent evidence suggests that intestinal bacteria could play a major role in various neurological conditions including autism spectrum disorders, multiple sclerosis, Parkinson's disease, and Alzheimer's disease (AD)," explains Sangram Sisodia from The University of Chicago.

AD is characterized by the formation of amyloid plaques and the activation of brain-resident immune cells called microglia. These cells can help remove amyloid plaques, but their activation may also exacerbate the disease by causing neuroinflammation.


AD patients exhibit changes in their gut microbiome, and Sisodia and colleagues previously found that gut bacteria may influence the development of Alzheimer's-like symptoms in rodents. Long-term antibiotic treatment limited the formation of amyloid plaques and reduced microglia activation in male, but not female, APP_{SWE}/PS1_{ΔE9} mice, which express mutant proteins associated with familial AD. "While compel-

ling, our published studies on the role of the gut microbiome on amyloid plaque formation were limited to a single strain of mice," Sisodia says.

Sisodia and colleagues, including first author Hemraj Dodiya, therefore examined the effects of antibiotics on a different mouse model of AD known as APPS1-21. Long-term treatment with a cocktail of antibiotics again reduced the formation of amyloid plaques in male mice but had no effect on females. Antibiotic treatment also appeared to alter the activation of microglia in male mice, changing them from a form that is thought to promote neurodegeneration to a form that helps to maintain a healthy brain.

To prove that these improvements in Alzheimer's symptoms were caused by alterations in the gut microbiome, the researchers transplanted fecal matter from untreated mice into antibiotic-treated animals. This procedure restored the gut microbiome and caused an increase in amyloid plaque formation and microglial activation.

But why do alterations in the gut microbiome only affect male mice? Sisodia and colleagues discovered that long-term antibiotic treatment changed the gut bacteria of male and female mice in different ways. The changes in the

Compared with a control (left), long-term antibiotic treatment (right) reduces the size of amyloid plaques (green) and alters the appearance of microglia (red) in the brains of male APPS1-21 mice.

Credit: Dodiya et al., 2019

microbiome of female mice caused their immune systems to increase production of several proinflammatory factors that could influence the activation of microglia.

"Our study shows that antibiotic-mediated perturbations of the gut microbiome have selective, sex-specific influences on amyloid plaque formation and microglial activity in the brain," Sisodia says. "We now want to investigate whether these outcomes can be attributed to changes in any particular type of bacteria."

RESEARCHER DETAILS

Hemraj B. Dodiya
Postdoctoral scholar; The University of Chicago

Sangram S. Sisodia
Thomas Reynolds Sr. Family Professor of Neurosciences; Director, Center for Molecular Neurobiology; The University of Chicago
ssisodia@bsd.uchicago.edu

ORIGINAL PAPER

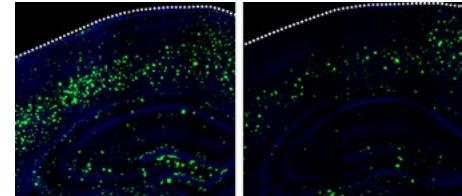
Dodiya, H.B., T. Kuntz, S.M. Shaik, C. Baufeld, J. Leibowitz, X. Zhang, N. Gottel, X. Zhang, O. Butovsky, J.A. Gilbert, and S.S. Sisodia. 2019. Sex-specific effects of microbiome perturbations on cerebral A β amyloidosis and microglia phenotypes. *J. Exp. Med.* 216:1542–1560.

<https://doi.org/10.1084/jem.20182386>

STROKE DRUG MAY ALSO PREVENT ALZHEIMER'S DISEASE

The genetically engineered protein 3K3A-APC reduces amyloid- β deposition in mice by inhibiting transcription of BACE1

3K3A-APC is a genetically modified version of a human blood protein called activated protein C, which reduces inflammation and protects both neurons and the cells that line the walls of blood vessels from death and degeneration. 3K3A-APC has beneficial effects in various mouse models of disease, including traumatic brain injury and multiple sclerosis, and is currently being developed to treat stroke in humans, where it has been shown to be safe, well tolerated, and capable of reducing intracerebral bleeding.


"Because of its neuroprotective, vaso-protective, and anti-inflammatory activities in multiple models of neurological disorders, we investigated whether 3K3A-APC can also protect the brain from the toxic effects of amyloid- β toxin in a mouse model of Alzheimer's disease," says Berislav V. Zlokovic, Director of the Zilkha Neurogenetic Institute at the Keck School of Medicine, University of Southern California.

Toxic amyloid- β peptides accumulate in the brains of Alzheimer's patients, leading to neurodegeneration and reduced blood flow within the brain. Zlokovic and colleagues, including

co-first authors Divna Lazic and Abhay Sagare, found that a four-month course of daily 3K3A-APC injections significantly reduced amyloid- β deposition in the brains of 5XFAD mice, which usually produce large amounts of the toxic peptide. 3K3A-APC treatment prevented these mice from losing their memory and helped maintain normal cerebral blood flow. By reducing the levels of microglia and proinflammatory cytokines, 3K3A-APC also suppressed inflammation within the brain, another common feature of Alzheimer's disease.

Zlokovic and colleagues found that 3K3A-APC protects the brain by inhibiting the NF- κ B-dependent transcription of BACE1, a protease that helps generate amyloid- β by cleaving amyloid precursor protein. 3K3A-APC inhibited the activation of NF- κ B in neurons, resulting in a 50% reduction of BACE1 levels in the cortex.

Several different inhibitors of BACE1 have been tested in clinical trials for Alzheimer's disease, but the new study suggests that using 3K3A-APC to block the expression of BACE1 could be an alternative approach, particularly at early

Compared with a control (left), 3K3A-APC treatment (right) greatly reduces the accumulation of amyloid- β (green) in the brains of 5XFAD mice.

Credit: Lazic et al., 2019

stages of the disease, when amyloid- β has yet to accumulate to levels capable of permanently damaging the brain. Besides suppressing inflammation independently of its anti-amyloidogenic effect, 3K3A-APC also directly protects neurons and brain vasculature from the toxic effects of amyloid- β .

"Our present data support the idea that 3K3A-APC holds potential as an effective anti-amyloid- β therapy for early stage Alzheimer's disease in humans," Zlokovic says.

RESEARCHER DETAILS

Divna Lazic
Research Scholar; Zilkha Neurogenetic Institute; Keck School of Medicine; University of Southern California

Abhay P. Sagare
Assistant Professor; Zilkha Neurogenetic Institute; Keck School of Medicine; University of Southern California

Berislav V. Zlokovic
Director; Zilkha Neurogenetic Institute; Keck School of Medicine; University of Southern California;
zlokovic@usc.edu

ORIGINAL PAPER

Lazic, D., A.P. Sagare, A.M. Nikolakopoulou, J.H. Griffin, R. Vassar, and B.V. Zlokovic. 2019. 3K3A-activated protein C blocks amyloidogenic BACE1 pathway and improves functional outcome in mice. *J. Exp. Med.* 216:279–293.

<https://doi.org/10.1084/jem.20181035>

THANK YOU TO OUR REVIEWERS

We are grateful to the following researchers who contributed their time and expertise to ensure the publication of quality science at *JEM* in 2019. *JEM* is committed to recognizing the service of our reviewers and is pleased to partner with Publons and ORCID as platforms to document their contributions.

Omar Abdel-Wahab	Jürgen Behrens	Dennis Burton	Michel Cogné
Laurent Abel	Gabrielle Belz	Meinrad Busslinger	Paul Cohen
Andrea Ablasser	Yinon Ben-Neriah	Eugene Butcher	Lillian Cohn
Marc Achen	Albert Bendelac	Jason Butler	Marco Colonna
Iannis Adamopoulos	Salvador Benitah	Noah Butler	Yingzi Cong
Erin Adams	Jeffrey Benovic	Oleg Butovsky	Marcus Conrad
Ralf Adams	Cornelia Bergmann	Tatiana Byzova	Gabriela Constantin
Adam Adler	Irwin Bernstein	Jorge Caamano	Matthew Cook
Prasad Adusumilli	Antonio Bertoletti	Nina Cabezas-Wallscheid	Angel Corbí
William Agace	Stuart Berzins	Ken Cadwell	Eva Corey
Dritan Agalliu	Semir Beyaz	George Calin	Valerie Cormier-Daire
Rafi Ahmed	Vivien Beziat	Daniel Campbell	Kevin Couper
Iannis Aifantis	Avinash Bhandoola	Michael Cancro	Joseph Craft
Alessandro Aiuti	Nina Bhardwaj	Qi Cao	Howard Crawford
Bahareh Ajami	Deepta Bhattacharya	Yihai Cao	John Crispino
Katerina Akassoglou	Christine Biron	Roxana Carare	Ben Croker
Shizuo Akira	Subhra Biswas	Francis Carbone	Shane Crotty
Balbino Alarcon	Joshua Black	Nadia Carlesso	Ronald Crystal
Pilar Alcaide	Victoria Blaho	S. Thomas Carmichael	Weiguo Cui
Jessy Alexander	Catherine Blish	Pico Caroni	Myron Cybulsky
Andrea Alimonti	Jeffrey Bluestone	Arturo Casadevall	Jason Cyster
Kari Alitalo	Richard Blumberg	Paolo Casali	Laura Danai
Todd Allen	Mathew Burton-Jones	Toni Celià-Terrassa	Anne Davidson
Abdullah Alli	Justin Boddey	Craig Ceol	Gerald De Haan
David Allman	Manfred Boehm	Andrea Cerutti	Ruggero De Maria
Frederick Alt	Christian Bogdan	Adelheid Cerwenka	Karin De Visser
Brian Altman	Bertrand Boisson	Grant Challen	Jolanda De Vries
Graham Anderson	Sebastien Bonnet	Jonah Chan	Rene De Waal Malefyt
Kellie Ann Jurado	Karin Bornfeldt	Jayanta Chaudhuri	Rashid Deane
Josef Anrather	Vassiliki Boussiotis	Dong Feng Chen	Thomas Decker
K. Mark Ansel	Joshua Boyce	Huanhuan Chen	Anthony DeFranco
Rajendra Apte	Marjorie Brand	Jichao Chen	Giannino Del Sal
Scott Armstrong	Jason Brenchley	Wanjun Chen	Greg Delgoffe
David Artis	Emery Bresnick	Yu Chen	Ruud Delwel
Maxim Artyomov	Thomas Brocker	Jonathan Chernoff	Gina DeNicola
Avery August	Petter Brodin	Sara Cherry	Mieke Dewerchin
Dorina Avram	Igor Brodsky	Milan Chheda	Javier Di Noia
Frances Balkwill	Vincenzo Bronte	Hongbo Chi	James Di Santo
Jacques Banchereau	David Brooks	Yueh-hsiu Chien	Michael Diamond
Oliver Bannard	Hal Broxmeyer	Augustine Choi	Sven Diederichs
Shideng Bao	Clare Bryant	Christine Choi	Andreas Diefenbach
Nick Barker	Yenan Bryceson	Jae-Hoon Choi	Stanislav Dikiy
Dan Barouch	Guojun Bu	Amy Chung	Stefanie Dommeler
Franck Barrat	Juliane Bubeck Wardenburg	John Chute	Donato DiMonte
Alan D.T. Barrett	Rebecca Buckley	Daniela Čiháková	Lei Ding
Armando Bartolazzi	Jane Buckner	Elisabetta Citterio	Lei Ding
Dirk Baumjohann	G.R. Budinger	Björn Clausen	David Dominguez-Sola
Isabel Beerman	Sven Burgdorf	Hans Clevers	Chen Dong

Stephanie Dougan	Dale Godfrey	Hal Hoffman	James Kavanagh
Glenn Dranoff	Todd Golde	Kristin Hogquist	Taro Kawai
Anette Duensing	Ananda Goldrath	Steven Holland	Nobuhiko Kayagaki
Darragh Duffy	Mary Goldring	Shohei Hori	Ross Kedl
Elaine Dzierzak	Harris Goldstein	Franck Housseau	Barbara Kee
Gerard Eberl	Douglas Golenbock	Hongzhen Hu	John Kehrl
Matthias Eberl	Christopher Goodnow	Jian Hu	Michelle Kelliher
Mikala Egeblad	Helen Goodridge	Xiaoyu Hu	Brian Kelsall
Lauren Ehrlich	Siamon Gordon	Bo Huang	Bradley Kerr
Anne Eichmann	Stanislas Goriely	Gang Huang	Rajiv Khanna
Stephanie Eisenbarth	Joan Goverman	Yadong Huang	Sundeep Khosla
Joseph El Khoury	John Grainger	David Hunstad	Carla Kim
Britta Engelhardt	Joe Gray	Robert Hunt	Juhyun Kim
Neta Erez	Benjamin Greenbaum	Christopher Hunter	Jungsu Kim
Justin Eyquem	Florian Greten	Nicholas Huntington	William Kim
Elena Ezhkova	Tim Greten	Sun Hur	Katherine King
Sidonia Fagarasan	Melanie Greter	Morgan Huse	Jonathan Kipnis
Donna Farber	H. Leighton Grimes	Richard Hynes	Florian Klein
Henner Farin	Sergei Grivennikov	Matteo Iannaccone	Ludger Klein
Michael Farrar	Olaf Gross	Juliana Idoyaga	Robyn Klein
James Fawcett	Christoph Grundner	Fumiyo Ikeda	Ulf Klein
Yongqiang Feng	Greta Guarda	Denise Inman	Christoph Kleinschmitz
Stefan Feske	Johann Gudjonsson	Luisa Iruela-Arispe	Paul Klenerman
Markus Feuerer	Pierre Guermonprez	Ken Ishii	Sarah Knox
Anthony Filiano	Nadia Guerra	Ivaylo Ivanov	George Kollias
Marie-Dominique Filippi	Martin Guilliams	Kazuhiro Iwai	Jay Kolls
Katherine Fitzgerald	Christina Gurnett	Yasuko Iwakiri	Manfred Kopf
James Fox	David Hafler	Atsushi Iwama	Thomas Korn
Nikolaos Frangogiannis	Marcia Haigis	Akiko Iwasaki	Richard Koup
Paul Frenette	Tim Halim	Bana Jabri	Shigeo Koyasu
Martin Friedlander	Sophie Hambleton	Eileen Jaffe	Florian Krammer
Scott Friedman	Jessica Hamerman	Frode Jahnsen	Kamil Kranc
John Fryer	Jiahui Han	Sébastien Jaillon	Michael Krangel
Mingui Fu	Douglas Hanahan	Rakesh Jain	Mitchell Kronenberg
Yang-Xin Fu	Gunnar Hansson	Julie Jameson	Paul Kubes
Shin-ichiro Fujii	Laurie Harrington	Stephen Jameson	Thomas Kupper
Dmitry Gabrilovich	Isaac Harris	Bassam Janji	Ralf Kuppers
Sarah Gaffen	David Harrison	Dragana Jankovic	Tomohiro Kurosaki
Thomas Gajewski	Nissim Hay	Tobias Janowitz	Christian Kurts
Stephen Galli	Barton Haynes	Lukas Jeker	David Kwiatkowski
Li Gan	Stephen Hedrick	Kim Jensen	Robert Lafyatis
Laurent Gapin	Vigo Heissmeyer	You Jeong Lee	Mohamed Lamkanfi
Adolfo Garcia-Sastre	Werner Held	Susan John	Philipp Lang
Gaetano Gargiulo	Saskia Hemmers	Emmanuelle Jouanguy	Olivier Lantz
Cecilia Garlanda	Rudi Hendriks	Kenji Kabashima	Antonio Lanzavecchia
Nicholas Gascoigne	Michael Heneka	Jonathan Kagan	Sylvain Latour
Georg Gasteiger	Matthew Hepworth	Tsuneyasu Kaisho	Marc Lecuit
Luca Gattinoni	DeBroski Herbert	Axel Kallies	Chih-Hao Lee
Jack Gauldie	Meenhard Herlyn	Raghu Kalluri	Jongsoon Lee
Patricia Gearhart	Betsy Herold	Takashi Kanaya	Michael Lenardo
Raif Geha	Daniel Herranz	Lawrence Kane	Claudia Lengerke
Teunis Geijtenbeek	Michael Hickey	Joonsoo Kang	David Levens
Michael Gerner	Andrés Hidalgo	Yibin Kang	Megan Levings
Cyrus Ghajar	David Hildeman	Thirumala-Devi Kanneganti	David Levy
Susan Gilfillan	Ann Hill	Daniel Kaplan	Klaus Ley
Derek Gilroy	Claire Hivroz	Mark Kaplan	Steven Ley
Florent Ginhoux	Timothy Hla	Stefan Kappe	Linheng Li
Jean-Philippe Girard	Ping-Chih Ho	Florian Karreth	Ming Li
Joseph Gleeson	Ted Ho	Gerard Karsenty	Qing Li

Wei Li	Alberto Mantovani	Ruth Muschel	Eric Pietras
Xiao-Jiang Li	Daniel Marks	Markus Müschen	Smitha Pillai
Xiaoxia Li	Eric Marsh	Laszlo Nagy	Hidde Ploegh
Yueming Li	Inga-Lill Mårtensson	Matthias Nahrendorf	Edward Plow
Zhang Li	Seamus Martin	Toshinori Nakayama	Amanda Poholek
Peter Libby	David Masopust	William Nauseef	Jeffrey Pollard
Judy Lieberman	Joan Massague	David Nemazee	Richard Possemato
Egil Lien	Diane Mathis	Kim Newton	Murali Prakriya
Arthur Liesz	Mehrdad Matloubian	Lai Guan Ng	Clare Pridans
Foo Liew	Tanya Mayadas	Bernhard Nieswandt	Alice Prince
Brett Lindenbach	Jared Mayers	David Nikolic-Paterson	Marco Prinz
Michelle Linterman	Massimiliano Mazzone	Ralph Nixon	Anne Puel
Adrian Liston	Joseph R. Mazzulli	Luigi Notarangelo	Bali Pulendran
Feng Liu	Florencia McAllister	John O'Shea	Ellen Pure
Huiping Liu	Maureen McGargill	Tim O'Sullivan	Yuliya Pylayeva-Gupta
Karen Liu	Dorian McGavern	Daniel Öhlund	Hai Qi
Yingjun Liu	Mandy McGeachy	Naoko Ohtani	Daniela Quail
Yun-Cai Liu	Andrew McGuire	Satoshi Okada	Sergio Quezada
Richard Locksley	Andrew McMichael	Klaus Okkenhaug	Francisco Quintana
Bart Loeys	Eric Meffre	Afam Okoye	Cristina Rada
Gregory Longmore	Wajahat Mehal	Daniel Olive	Freddy Radtke
Michael Lotze	Joseph Melenhorst	Eugene Oltz	Klaus Rajewsky
Clifford Lowell	Ignacio Melero	Joost Oppenheim	Ricardo Rajksbaum
Paul Lu	Simón Méndez-Ferrer	Jordan Orange	Troy Randall
Theresa Lu	George Mentiz	Robert Orchard	Gwendalyn Randolph
Zhimin Lu	Christian Metallo	Moishe Oren	Rino Rappuoli
Carrie Lucas	Isabelle Meyts	Elisa Oricchio	Vijay Rathinam
Daniel Lucas	George Miller	Wenjun Ouyang	Michael Rauchman
Burkhard Ludewig	Robert Miller	Huib Ovaa	David Raulet
Enrico Lugli	Timothy Miller	Oliver Pabst	Steven Reed
Amaia Lujambio	Simon Milling	Timothy Padera	Jan Rehwinkel
Eline Luning Prak	Thomas Milne	Christopher Paige	Hans-Christian Reinecker
Francis Luscinskas	Joshua Milner	Peter Palese	Boris Reizis
Andrew Luster	Jonathan Miner	Noah Palm	Nicholas Restifo
Sanjiv Luther	Veronique Miron	Karolina Palucka	Bruno Reversade
Nils Lycke	Tom Misteli	Søren Paludan	Teresa Reyes
David Lyden	Michael J. Mitchell	Fan Pan	Claude-Agnes Reynaud
David Lyons	Jenny Mjösberg	Katherine Panageas	Antoni Ribas
Averil Ma	Edward Mocarski	Giuseppe Pantaleo	Jeremy Rich
Jian-xing Ma	Ari Molofsky	Jack Parent	Alan Rickinson
Xiaojing Ma	Michelle Monje	Christopher Park	James Riley
Neil Mabbott	Tony Moody	Jung-Hyun Park	Mercedes Rincon
Margaret MacDonald	Tomohiro Morio	Chandrashekhar Pasare	John Rinn
Halina Machelska	Craig Morrell	Virginia Pascual	Robert Rissman
Laura Mackay	Eric Morrow	Laura Pasqualucci	Amariliz Rivera
Elizabeth Maher	Jennifer Morton	Tanya Paull	Davide Robbiani
Rick Maizels	Muriel Moser	Erika L Pearce	Inez Rogatsky
Ravindra Majeti	David Mosser	R. Stokes Peebles	Chiara Romagnani
Tak Mak	Maria Mota	Roberta Pelanda	Luigina Romani
Thomas Malek	Allan Mowat	Sandra Pellegrini	Ru Rong Ji
Asrar Malik	Daniel Mucida	Joao Pereira	Stefan Rose-John
Bernard Malissen	Scott Mueller	Justin Perry	Oren Rosenberg
Ziad Mallat	Debabrata Mukhopadhyay	Rachel Perry	Michael Rosenblum
Giovanna Mallucci	Charles Mullighan	Karlheinz Peter	Philip Rosenstiel
Karl-Johan Malmberg	Mary Munson	Tatiana V Petrova	Karl Rudolph
Maksim Mamonkin	Christian Munz	Tri Phan	David Ruggero
Nicolas Manel	Kenneth Murphy	Laura Piccio	Anil Rustgi
John Manis	Peter Murray	Stefano Piccolo	Daniel Saban
Amity Manning	Cornelis Murre	Alicia Pickrell	Michel Sadelain

Supriya Saha
Federica Sallusto
Michael Samuel
Vanessa Sancho-Shimizu
David Sancho
Stefano Santaguida
Toshiro Sato
Ansuman Satpathy
Peter Savage
Ram Savan
Paul Sawchenko
Paola Scaffidi
Dorothy Schafer
Alexander Scheffold
Philipp Scherer
Andreas Schlitzer
Marc Schmidt-Suprian
Nathalie Schmitt
Kate Schroder
Susan Schwab
Robert Schwabe
Markus Schwaninger
Michal Schwartz
Olivier Schwartz
Pamela Schwartzberg
Benjamin Segal
Cyril Seillet
Rafick-Pierre Sekaly
Jyoti Sen
Carlos Serezani
Virginia Shapiro
Dmitry Shayakhmetov
Samuel Shelburne
Alan Sher
Brian Sheridan
Ethan Shevach
Pei-Yong Shi
Yongsheng Shi
Sunny Shin
Ramesh Shivedasani
Ziv Shulman
Eric Shusta
L. Sibley
Antonio Sica
Robert Siliciano
John Silke
Roy Silverstein
Guido Silvestri
Alfred Singer
Harinder Singh
Mihaela Skobe
Radek Skoda
Mark Slifka
Kenneth Smith
Ryan Smith
Hans-Willem Snoeck
Andrew Snow
Mark Snyder
Ole Søgaard
Gregory Sonnenberg
Lydia Sorokin
Janet Sparrow
Nancy Speck
Anne Sperling
Hergen Spits
Jonathan Sprent
Steven Stacker
Peter Staeheli
Christina Stallings
Leonidas Stamatatos
E. Richard Stanley
Ulrich Steidl
Christoph Stein
Jens Stein
Lawrence Steinman
Daniel Stetson
Brigitta Stockinger
Patrizia Stoitzner
Sean Stowell
Warren Strober
Helen Su
Lishan Su
David Sulzer
Jie Sun
Joseph Sun
Shao-Cong Sun
Eric Sundberg
Mark Sundrud
Fayyaz Sutterwala
Catharina Svanborg
Camilla Svensson
Filip Swirski
Nobuaki Takahashi
Osamu Takeuchi
Stuart Tangye
Ichiro Taniuchi
David Tarlinton
Marco Tartaglia
Steven Teitelbaum
Vinay Tergaonkar
Clotilde Thery
Paul Thomas
Ranjeny Thomas
Edward Thorp
Adrian Thrasher
Robert Tighe
Jenny Ting
Hervé Tiriac
Kai-Michael Toellner
Elena Tomasello
Ivan Topisirovic
María Toribio
Aminata Touré
Bruce Trapnell
Giorgio Trinchieri
Alexandra Trkola
Lloyd Trotman
Jennifer Trowbridge
Andreas Trumpp
Oleg Tsodikov
George Tsokos
Hidekazu Tsukamoto
Rubin Tuder
Shannon Turley
Martin Turner
Stephen Turner
Irina Udalova
Sophie Ugolini
Emil Unanue
Golnaz Vahedi
Jaap Van Buul
Jo Van Ginderachter
Luc Van Kaer
Rene Van Lier
Maarten Van Lohuizen
Russell Vance
Bart Vandekerckhove
Matthew Vander Heiden
Robert Vassar
Andrea Velardi
Amit Verma
David Vermijlen
Dietmar Vestweber
Gabriel Victora
Monika Vig
Ivan Vijovic-Cvjin
Carola Vinuesa
Eric Vivier
Matthias Von Herrath
Domagoj Vucic
Andreas Wack
Ari Waisman
Linda Wakim
Bruce Walker
Lary Walker
David Wallach
Thierry Walzer
Shizhen Wang
Sibao Wang
Kounosuke Watabe
David Watkins
Tania Watts
Alissa Weaver
Valerie Weaver
Robert Weinberg
Arthur Weiss
Mitchell Weiss
William Weiss
Hartmut Wekerle
Hans-Guido Wendel
Jason Whitmire
Linda Wicker
Heinz Wiendl
Christoph Wilhelm
Matthew Williams
Patrick Wilson
Douglas Winton
David Withers
Catherine Wu
Zhijian Wu
Kai Wucherpfennig
Thomas Wynn
Tony Wyss-Coray
Huaxi Xu
Masahiro Yamamoto
Kelley Yan
Nan Yan
Riqiang Yan
George Yap
Felix Yarovinsky
Jonathan Yewdell
Wayne Yokoyama
Benjamin Youngblood
Jianhua Yu
Laurent Yvan-Charvet
Alexander Zarbock
Hassane Zarour
Dietmar Zehn
Christina Zeitz
Santiago Zelenay
Rugang Zhang
Shen-Ying Zhang
Xiang Zhang
Hui Zheng
Lei Zheng
Ye Zheng
Binhua Zhou
Dawang Zhou
Jinfang Zhu
Julie Zikherman
Laurence Zitvogel
Berislav Zlokovic
Weiping Zou
Juan Carlos Zuniga-Pflucker

TOOLS FOR DISCOVERY

Journal of Experimental Medicine (JEM) publishes papers providing novel conceptual insight into immunology, neuroscience, cancer biology, vascular biology, microbial pathogenesis, and stem cell biology. All editorial decisions are made by active scientists in conjunction with professional editors. Established in 1896, *JEM* publishes 12 issues per year. www.jem.org

Journal of Cell Biology (JCB) publishes advances in any area of basic cell biology as well as applied cellular advances in fields such as immunology, neurobiology, metabolism, microbiology, developmental biology, and plant biology. All editorial decisions on research manuscripts are made through collaborative consultation between professional editors with scientific training and academic editors who are active in the field. Established in 1955, *JCB* publishes 12 issues per year. www.jcb.org

Journal of General Physiology (JGP) publishes mechanistic and quantitative cellular and molecular physiology of the highest quality; provides a best in class author experience; and nurtures future generations of researchers. All editorial decisions on research manuscripts are made through a collaborative consultation between the Editor-in-Chief and Associate Editors, all of whom are active scientists. Established in 1918, *JGP* publishes 12 issues per year. www.jgp.org

Life Science Alliance (LSA) is a global, open-access, editorially independent, and peer-reviewed journal launched in 2018 by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. *Life Science Alliance* is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences. www.lsajournal.org

**Rockefeller
University
Press**

LEARN MORE AT RUPRESS.ORG

Executive Director

Susan King

Assistant Director, Finance

Laura Bisberg

Director of Editorial Development

Teodoro Pulvirenti

Director of Publishing Technologies

Robert J. O'Donnell

Director of Communications and Marketing

Rory Williams

Executive Assistant to Executive Director;

Office Administrator

Demantie (Sati) Motieram

Financial Analyst

Sarah S. Kraft

Marketing Associate

Laraine Karl

Senior Science Writer

Ben Short

Journal of Experimental Medicine (ISSN 0022-1007) is published monthly by Rockefeller University Press, 950 Third Avenue, New York, NY 10022. Periodical postage paid at New York, NY and additional mailing offices.

2020 Subscription Rates

Institutional Rates

	Tier 1	Tier 2	Tier 3	Tier 4
Online	\$1,780	\$2,340	\$3,170	\$4,050
Print + Online	\$3,990	\$4,480	\$5,030	\$6,430

For more information, please contact our subscription office.

Phone: +1 860-350-0041

Fax: +1 860-350-0039

email: subs@rockefeller.org

Advertising Requests

Phone: 201-767-4170

email: rupads@rockefeller.edu

Permission Requests

email: permissions@rockefeller.edu

Media Requests

email: news@rockefeller.edu

Postmaster

Send address changes to *Journal of Experimental Medicine*, Subscription Office, The Bleachery, 143 West Street, New Milford, CT 06776.

MAKE CONNECTIONS

Sign up for email alerts from *JEM* to stay informed of the latest discoveries and make connections that can impact your research.

news.rupress.org/Alerts

