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A RT I C L E

Acetylcholine Receptor Gating at Extracellular Transmembrane 
Domain Interface: the Cys-Loop and M2–M3 Linker

Archana Jha, David J. Cadugan, Prasad Purohit, and Anthony Auerbach

Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214

Acetylcholine receptor channel gating is a propagated conformational cascade that links changes in structure and 
function at the transmitter binding sites in the extracellular domain (ECD) with those at a “gate” in the transmem-
brane domain (TMD). We used Φ-value analysis to probe the relative timing of the gating motions of α-subunit res-
idues located near the ECD–TMD interface. Mutation of four of the seven amino acids in the M2–M3 linker (which 
connects the pore-lining M2 helix with the M3 helix), including three of the four residues in the core of the linker, 
changed the diliganded gating equilibrium constant (Keq) by up to 10,000-fold (P272 > I274 > A270 > G275). 
The average Φ-value for the whole linker was �0.64. One interpretation of this result is that the gating motions of 
the M2–M3 linker are approximately synchronous with those of much of M2 (�0.64), but occur after those of the 
transmitter binding site region (�0.93) and loops 2 and 7 (�0.77). We also examined mutants of six cys-loop residues 
(V132, T133, H134, F135, P136, and F137). Mutation of V132, H134, and F135 changed Keq by 2800-, 10-, and 
18-fold, respectively, and with an average Φ-value of 0.74, similar to those of other cys-loop residues. Even though V132 
and I274 are close, the energetic coupling between I and V mutants of these positions was small (≤0.51 kcal mol−1). 
The M2–M3 linker appears to be the key moving part that couples gating motions at the base of the ECD with those 
in TMD. These interactions are distributed along an �16-Å border and involve about a dozen residues.

I N T R O D U C T I O N

The acetylcholine receptor (AChR) is a large, fi ve-subunit 

membrane protein that isomerizes between C(losed)- and 

O(pen)-channel conformations (Edelstein and Changeux, 

1998; Unwin, 2000; Karlin, 2002; Lester et al., 2004; Sine 

and Engel, 2006). This “gating” reaction, which couples 

a change in structure (and affi nity) at two transmitter bin-

ding sites with a change in structure (and conductance) 

at a narrow region of pore, involves the motions of hun-

dreds of residues spread throughout this �300-kD protein. 

The diliganded C↔O transition can occur in �1 μs 

(Maconochie et al., 1995; Chakrapani and Auerbach, 

2005), a time scale that is shorter than the resolution of 

the patch clamp but long compared with many different 

kinds of protein motion (Jardetzky, 1996; Karplus and 

Kuriyan, 2005; Boehr et al., 2006). To understand this 

complex and relatively slow chemical reaction it is useful 

to illuminate the dynamics of the short-lived intermedi-

ate states that link stable C with stable O. We will refer to 

this ensemble of brief intermediates as the transition re-

gion (TR) of the reaction.

Although the structure or function of the TR cannot 

be probed directly, it is possible to infer its character-

istics from the rate constants of the diliganded gating 

reaction. A rate-equilibrium free energy relationship 

(REFER) is a log-log plot of the opening rate constant vs. 

the equilibrium constant (opening rate constant/closing 

rate constant) for a mutational series. This relationship 

is often approximately linear with a slope (Φ) that is a 

fraction between 0 and 1. Φ values for diliganded gating 

have been measured for >100 different AChR residues, 

and the emergent map, although incomplete, shows a 

distinct pattern. There is, approximately, a coarse-grained 

and decreasing gradient in Φ between the transmitter 

binding site and gate (Grosman et al., 2000b; Purohit 

et al., 2007).

Although there are likely to be many possible confor-

mational trajectories through the TR ensemble, a sim-

ple model that assumes a single pathway through a 

one-dimensional, sequential series of intermediate-state 

transitions accounts surprisingly well for the map of Φ 

(Zhou et al., 2005). With this model, Φ values provide 

the relative timing of the gating motion of individual 

residues, with the limits 1 and 0 marking “early” and 

“late” (Auerbach, 2007). Alternative interpretations 

have been proposed, namely that fractional Φ values 

refl ect fractional structures (C-like vs. O-like) of individ-

ual side chains at the TR, or heterogeneous structures 

in the TR arising from multiple pathways. With the in-

terpretation that Φ provides temporal information, the 

clustering of Φ values in the AChR implies that there 

are about a dozen nanometer-sized domains compris-

ing residues that exhibit temporally correlated gating 

motions (“Φ blocks”), and that these domains move back 

and forth (on �50-ns time scales) to link the structural 

Correspondence to Anthony Auerbach: auerbach@buffalo.edu

Abbreviations used in this paper: AChR, acetylcholine receptor; ECD, 

extracellular domain; REFER, rate-equilibrium free energy relationship; 

TMD, transmembrane domain; TR, transition region; wt, wild type.
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548 Φ-Value Analysis of the AChR αM2–M3 Linker

changes at the transmitter binding sites that regulate 

affi nity for agonists with those at a distant “gate” that reg-

ulate ion fl ux. We use this conceptual framework, namely 

that of brownian movement along a linear sequence 

of intermediate steps (a “brownian conformational wave”; 

Auerbach, 2005) for understanding the detailed mech-

anism of AChR gating.

TR structural transitions occurring near the interface of 

the ECD and the TMD (mainly in the α subunits) are 

components of this “wave.” Unwin (2005) proposed that 

there is an isomerization of backbone bonds in the M2–M3 

linker at residue G275, and Lummis et al. (2005) sug-

gested that in the related 5HT3A receptor an isomerization 

of a proline in this linker is essential for effi cient gating. 

Lee and Sine (2005) provided evidence that the perturba-

tion of a salt bridge at this interface, between R209 in the 

“preM1” segment and E45 in loop 2, is an important 

dynamic gating event. Based on cryo-EM analyses of un-

liganded-closed Torpedo AChRs, Unwin et al. (2002) hy-

pothesized that in diliganded C↔O gating the α subunits 

undergo a rotation of the inner β sheets of the ECD, which 

then perturbs loop 2, the top of the M2 (pore-lining) he-

lix, and the gate. Here, we describe the results of Φ-value 

analyses of residues in the M2–M3 linker and the cys-loop 

(loop 7), both of which are located at the ECD–TMD inter-

face region. In two companion papers, we describe related 

observations regarding the effects of mutations of resi-

dues in the preM1 (β10–M1) linker, the site of the putative 

salt bridge (Purohit and Auerbach, 2007a), and residues 

in the β-core of the ECD (Purohit and Auerbach, 2007b).

The 4-Å structure of Torpedo AChRs (Unwin, 2005) 

shows that in the α subunits the linker between the M2 

and M3 helices consists of four amino acids: P272-L273-

I274-G275. Mutation of the homologous proline in 5HT3A 

receptors (to six different side chains) yields nonfunc-

tional channels that are traffi cked normally to the mem-

brane and have wild-type antagonist-binding properties 

(Lummis et al., 2005), but the substitutions of unnatural 

amino acids that can undergo a backbone cis–trans isom-

erization are functional. This suggests that a change in the 

angle of the M2–M3 backbone is necessary for effi cient 

gating. In AChRs, a full cis–trans isomerization of P272 is 

not essential for gating because a serine substitution only 

modestly alters the gating equilibrium constant (Keq; Lee 

and Sine, 2005). Nonetheless, these same studies show that 

AChR residue P272 moves in the TR (because a glycine 

substitution reduces Keq by �150-fold) and interacts en-

ergetically with V46 in loop 2 (by �1.6 kcal/mol).

The fl anking regions of the M2–M3 linker, which in-

clude residues S269 and A270 in M2 and residues K276 

and Y277 in M3, also participate in the gating reaction. 

Mutation of αS269 increases Keq mainly by increasing 

the channel opening rate constant (Grosman et al., 2000a; 

Mitra et al., 2005), and mutation of αY277 increases Keq 

mainly by decreasing the channel closing rate constant 

(Cadugan and Auerbach, 2007). This suggests that the 

gating motions in the α subunit at the top of M2 occur 

before those at the top of M3. Below, we describe the 

consequences of αA270 and αK276 mutations.

The M2–M3 linker has also been shown to participate 

in diliganded gating of various neuronal AChRs (Campos-

Caro et al., 1996; Rovira et al., 1998), glycine receptor α1 

homomers (Lynch et al., 1997), and GABAC receptor ρ1 

homomers (Kusama et al., 1994). In chimeric α7-5HT3A 

receptors, whole-cell current amplitudes are increased 

when an Asp side chain is inserted in the fl anking M2 

region, probably because of an increase in Keq (Castillo 

et al., 2006). In GABAA receptors, a charge reversal at K279 

(αS266 in AChRs, in M2) decreases Keq, and energetic 

coupling is apparent between this residue and D57 in 

loop 2 (Kash et al., 2003). Further evidence of the impor-

tance of the M2–M3 linker (plus fl anking regions) in 

gating is that mutation causes human disease (Shiang 

et al., 1993, 1995; Elmslie et al., 1996; Croxen et al., 1997).

The “cys-loop” (β6-β7 linker, or loop 7) is composed 

of 13 residues bracketed by a disulfi de bond (αC128- 

αC142). In the mouse α-subunit, the cys-loop sequence is: 

E I I V T H F P F D E Q N . Previously, it was shown that muta-

tions of several cys-loop residues (H134, F135, F137, D138, 

and Q140) increase or decrease Keq, mainly by changing 

the channel-opening rate (Chakrapani et al., 2004). This 

Φ-value places the gating motion of the cys-loop before 

that of M2, and approximately synchronous with that of 

loop 2. The cys-loop myasthenic mutation V132L reduces 

the Kd for ACh (by �30-fold) at one transmitter binding 

site but has only a small effect on Keq (Shen et al., 2003). 

Mutation of residue D138 (to K and A) yields nonfunc-

tional AChRs, whereas an E substitution generates only 

a small (less than fi vefold) change in Keq (Chakrapani 

et al., 2004; Xiu et al., 2005). In other receptors, it has 

been shown that the fast activation of whole cell currents 

TA B L E  I

M2–M3 Linker Sequence Alignment of Mouse AChR Subunits

Subunit

α1 A V P L I G K

α2 V I P L I G E

α3 V I P L I G E

α4 V I P L I G E

α6 V I P L V G E

α7 S V P L I A Q

α9 – V P L I G K

α10 – V P L I G K

β1 A V P L I I I

β2 D V P L V G K

β3 V I P L I G E

β4 D I P L I G K

δ A I P L V G K

γ A V P L I S K

ε S V P L L G R

In the α1 subunit, the M2–M3 linker is A270-K276.
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from chimeras of α7 (ECD) and glycine (TMD) recep-

tor increases when the α7 cys-loop residues are changed 

to their glycine receptor counterparts, or when the gly-

cine receptor M2–M3 linker residues are changed to 

their α7 counterparts (Grutter et al., 2005). An interac-

tion between F135 in the cys-loop and L270/I271 in the 

M2–M3 linker has been predicted from MD simulations 

(Cheng et al., 2007). Mutation of D149 in GABAA recep-

tors decreases the amplitudes of whole cell currents, and 

the mutation of D148 in glycine receptors increases the 

response EC50, in both cases by charge-dependent mecha-

nisms (Kash et al., 2003; Schofi eld et al., 2003).

We have quantifi ed the effects of mutations on the di-

liganded AChR opening and closing rate constants for 

every residue in the α-subunit M2–M3 linker (positions 

270–276) plus six cys-loop residues. The results add to 

the map of AChR Φ values and shed light on some of the 

structural transitions of the TR. We conclude that at the 

ECD–TMD interface the transfer of energy between ad-

jacent Φ blocks occurs along a broad, �16-Å boundary 

and requires the motion of multiple residues.

M AT E R I A L S  A N D  M E T H O D S

Mutagenesis and Expression
Mutants of mouse AChR subunit cDNAs were made by using the 
QuickChange Site-directed Mutagenesis Kit (Stratagene) and were 
verifi ed by nucleotide sequencing. Human embryonic kidney fi bro-
blast cells (HEK 293) were transiently transfected using calcium 
phosphate precipitation. HEK cells were treated with 0.875 mg DNA 
per 35-mm culture dish in the ratio of 2:1:1:1 (α:β:δ:ε) for �16 h. 
Most electrophysiological recordings were made �24 h later. We 
quantifi ed the gating rate constants for a total of 37 different mu-
tants, at 11 different amino acid positions in the M2–M3 linker 
region and cys-loop.

Electrophysiology
Recordings were performed in cell-attached patch confi guration at 
22°C. The bath and pipette solutions were Dulbecco’s phosphate-
buffered saline containing (in mM): 137 NaCl, 0.9 CaCl2, 2.7 KCl, 
1.5 KH2PO4, 0.5 MgCl2, and 8.1 Na2HPO4 (pH 7.3). Pipettes made 
from borosilicate capillaries were coated with Sylgard (Dow Corn-
ing Corp.). The average pipette resistance was 10 MΩ. The pipette 
potential was held at +70 mV, which corresponds to a membrane 
potential of approximately −100 mV. Single-channel currents were 
recorded using a PC-505 amplifi er (Warner Instrument Corp.) with 
low-pass fi ltering at 20 kHz. The currents were digitized at a sampling 
frequency of 50 kHz using a SCB-68 acquisition board (National 
Instruments Corp.) and QUB software (www.qub.buffalo.edu).

Agonist (acetylcholine or choline) was added to the pipette 
solution at a concentration that is approximately fi ve times the 
closed-conformation equilibrium dissociation constant (Kd; 500 μM 
or 20 mM, respectively). The choice of agonist was determined 
by the effect of the mutation. To estimate the gating rate constants 
it is necessary to identify clusters of openings that arise from a sin-
gle AChR (see below) and then to measure the lifetimes of open 
and shut intervals within those clusters. At high agonist concentra-
tion, the ability to satisfy both of these criteria depends on the 
gating equilibrium constant Keq. More specifi cally, because the clos-
ing rate constant (kc) is approximately the same for all agonists 
(Grosman et al., 2000b), the magnitude of Keq depends mainly 
on the magnitude of the opening rate constant (ko). In wild-type 
(wt) AChRs under our experimental conditions, ko with choline 
(�120 s−1; see below) or ACh (�48,000 s−1) is near the lower or 
upper limit of our estimation capability, respectively. Thus, cho-
line was used to activate constructs in which Keq was larger than in 
the wt (gain-of-function mutants) and ACh was used to activate 
constructs in which Keq was smaller than in the wt (loss-of-function 
mutants). The opening rate constants for un- and monoliganded 
AChRs are much smaller than that for diliganded AChRs, so even 
though the concentration of agonist was only fi ve times the Kd, 
essentially all of the openings were from fully liganded receptors.

Rate Constant Determination
The analyses were done by using QUB software. At 500 μM ACh or 
20 mM choline openings occur in clusters with long gaps between 

Figure 1. The αε subunit M2–M3 linker 
(from 2bg9.pdb; Unwin, 2005). Left, in 
each AChR subunit the extracellular do-
main (ECD) is mostly β-sheet and the 
transmembrane domain (TMD) has four 
α helices. Residue W149 (brown) marks the 
transmitter binding site, M2 (blue) lines 
the pore and is linked to M3 (red) at the 
ECD/TMD interface (boxed). Right, ex-
panded view of the boxed area. M2–M3 
linker residues A270-K276 are colored by 
element: green, carbon; red, oxygen and 
blue, nitrogen. The colored domains are: 
orange, cys-loop; cyan, loop 2. M1, M4, 
loop9, and the preM1 linker have been re-
moved for clarity. The core sequence of 
the M2–M3 linker is PLIG (272–275).
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clusters refl ecting epochs when all of the AChRs in the patch are 
“desensitized.” Clusters of individual-channel, diliganded C↔O 
activity were usually selected by eye. We sometimes tested the eye-
selection procedure by using a critical time (tcrit) of 50 ms to defi ne 
a cluster, with equivalent results. Clusters were idealized into noise-
free intervals after fi ltering digitally (12 kHz) by using the segmental 
k-means algorithm (Qin, 2004) with a C↔O model (starting rate = 
100 s−1). The opening and closing rate constants were estimated 
from the interval durations by using a maximum-interval likeli-
hood algorithm (Qin et al., 1997) after imposing a dead time cor-
rection of 25 μs. Usually, the rate constants were estimated by 
using a two-state, C↔O model because the log likelihood of the 
fi t did not increase after adding additional C or O states. In �25% 
of patches a second closed state was connected to the O state 
to accommodate a relatively rare (<5% of closed intervals within 
clusters) and short-lived (�2 ms) nonconducting state (Elenes 
and Auerbach, 2002).

Historical reports from our lab of ko for wt AChRs activated by 
choline range from 53 ± 8 s−1 (mean ± SEM; Zhou et al., 1999) 
to 257 s−1 (in 140 mM KCl; Grosman and Auerbach, 2000). This 
degree of variance is larger than typical for other constructs 
(Table III). More recently, Mitra et al. (2004) report 120 ± 6 s−1 
(mean ± SEM) and Corradi et al. (2007) report 95 s−1 (no error 
given) for ko of wt AChRs activated by 20 mM choline. We suspect 
that some of the variance in the ko estimate with choline arises 
from diffi culties in identifying single-channel, low open probabil-
ity clusters, which may be contaminated by sojourns in desensi-
tized states or by openings from overlapping clusters (see above). 
In support of this hypothesis, we note that mutant constructs 
showing higher cluster open probabilities have similar variances 
for ko regardless of whether ACh or choline was used as the ago-
nist. For example, the ko estimates in three patches for αA270F 
activated by choline were 1601, 1846, and 1706 s−1 (1717 ± 70 s−1; 
mean ± SEM), whereas those for G275P activated by ACh were 

Figure 2. Example single-channel current clusters 
for different M2-M3 linker constructs. (A) Continu-
ous recording at low time resolution (I274F acti-
vated by 500 μM acetylcholine). Openings are 
down. The long gaps between clusters of opening 
refl ect times when all channels in the patch are de-
sensitized. Each cluster mainly refl ects C↔O gating 
of a single AChR. Below, one cluster shown on an 
expanded time scale. (B) Example clusters of dif-
ferent constructs. Currents were activated either 
by 20 mM choline (indicated by a subscript) or by 
500 μM ACh.
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3217, 3756, and 3195 s−1 (3380 ± 183). Regardless of the source, 
the effect of the uncertainty in ko for the wt/choline construct 
on the Φ estimate is not major. For instance, normalizing ko 
for mutants of αA270, a residue that has a “typical” REFER (150-
fold range in Keq), using 53, 120, and 250 s−1 as the wt/choline 
value yields Φ estimates of 0.69 ± 0.05, 0.65 ± 0.07, and 0.56 ± 
0.08, respectively.

The Kd for acetylcholine was estimated only for the αI274F 
construct (Fig. 4). Open and closed interval durations were ob-
tained at three different ACh concentrations (30, 50, and 100 μM). 
The two agonist binding sites were assumed to be equivalent 
and independent (Salamone et al., 1999), and the interval dura-
tions at all three concentrations were fi tted together by using a 
C↔AC↔A2C↔A2O kinetic model (A = agonist; dead time = 
35, 75, and 35 μs, respectively) that had four rate constants as 
free parameters: single-site association (k+, scaled by [A]), single-
site dissociation (k-), ko, and kc.

REFER Analysis
Φ was estimated as the slope of the rate-equilibrium free energy 
relationship (REFER), which is a plot of log ko vs. log Keq (see 
Figs. 3 and 5).

The apparent values of ko and kc both underestimate the true 
opening and closing rate constants. ko is underestimated because 
the binding sites are not fully saturated. The factor by which ko is 
underestimated (F) is a function of the agonist concentration ([A]) 
and the equilibrium dissociation constant (Kd; Colquhoun and 
Hawkes, 1981): F = ([A]/2Kd)/(1 + ([A]/2Kd)). In our experi-
ments [A]/Kd = 5 for both ACh and choline, hence F ≈ 0.71 for 
both agonists. Assuming that the mutations did not alter Kd, the 
normalized (wt/mut) apparent ko values for both agonists could 
therefore combined without correction in the REFER without 
adding bias to the Φ estimate.

The observed closing rate constant (kc
obs) underestimates the 

true value because of channel block by the agonist. The equilib-
rium dissociation constant for this block (KB) is �12 mM for cho-
line (Purohit and Grosman, 2006) and �2 mM for ACh (Auerbach 
and Akk, 1998), thus the value [A]/KB was different for 20 mM 
choline (�1.67) vs. 0.5 mM ACh (�0.25). Using the approxima-
tion that unblock from the closed channel is negligible (Purohit 
and Grosman, 2006), we calculate the underestimation factor as 
(1 + [A]/KB). Thus, kc

obs underestimates kc by a factor of �2.67 in 
the choline experiments but only by 1.25 in the ACh experiments. 
To eliminate this agonist bias in the Keq estimate and the REFER 
slope, kc

obs was multiplied by the appropriate factor in order ob-
tain a corrected estimate, kc

cor. Note that because the lifetime 
of the agonist-blocked channel is shorter than our time resolution, 
the apparent amplitudes of the choline- vs. ACh-induced cur-
rents were reduced approximately by the same factor as the under-
estimation of kc.

For residues that showed both an increase and a decrease in Keq 
upon mutation, the rate constants for AChRs activated by choline 
or by ACh were combined into the same REFER after normalizing 
both ko and Keq by the corresponding wt values. In our REFERs, 
the wt values used for ko and Keq were 120 s-1 and 0.046 for AChRs 
activated by choline and 48,000 s-1 and 28.2 for AChRs activated 
by ACh. The normalized rate and equilibrium constants with ei-
ther agonist fall approximately on the same line. Similarly, Φ val-
ues for the δS268 mutant family were the same regardless of 
whether the AChRs were activated by choline or acetylthiocholine 
(Grosman et al., 2000a), and the Φ-value for M4 residue T422 was 

Figure 3. Rate-equilibrium free energy relationships (REFERs) 
for all seven M2–M3 linker residues. Φ (indicated in the lower 
right corner of each plot; see Table II) is estimated as slope of 
a linear fi t. The wild-type side chain is boxed. The agonist was 
either ACh (500 μM, closed circles) or choline (20 mM, open 
circles). Both the opening rate and equilibrium constants have 
been normalized (mutant/wt). Φ values could not be deter-
mined for positions V271, L273, and K276 because the change 
in Keq was too small. The average Φ-value for the M2–M3 linker 
is �0.64.

TA B L E  I I

Φ Values

Position Φ (±SD) Fold-change in Keq 

A270 0.65 (0.07) 150

V271 – 2

P272 0.62 (0.05) 11850

L273 – 4

I274 0.62 (0.04) 2014

G275 0.65 (0.06) 88

K276 – 5

V132 0.75 (0.08) 2820

T133 – 6

H134 0.71 (0.03) 10

F135 0.75 (0.12) 18

F137 – 4

The fold-change in Keq is for the most extreme constructs at each position. 

The REFERs are shown in Figs. 3 and 5. Φ values could not be determined 

accurately for positions where the fold-change in Keq was <10-fold.
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the same with choline (on an δS268N background, 0.54+0.02; 
Mitra et al. 2004) and ACh (Bouzat et al., 2000). These results 
strongly support the notion that a change in agonist (or an inde-
pendent background mutation) is like a primary mutation insofar 
as it can be treated as a simple perturbation in the energy land-
scape of the gating reaction (rather than as something that creates 
an entirely new reaction pathway). We document this observation 
further in Purohit and Auerbach (2007b).

The slope of the REFER was estimated by an unweighted, lin-
ear fi t in OriginPro 7.0. We did not weight the residuals by using 
the errors on either axis because it was previously shown that for 
REFERs of M2 residues, this procedure changed only the standard 
deviation of the Φ estimate and not the mean (Purohit et al., 
2007). For a linear, sequential, bounded reaction mechanism, 
Φ provides relative temporal information regarding the movement 
of the perturbed side chain in the gating reaction (1 is “early,” 0 is 
“late,” and the same is “synchronous”) (Auerbach, 2007).

We used a weighted, k-means cluster analysis algorithm (in 
QUB) to determine the number (n) of distinct populations of Φ-
value and to assign each residue to one of these populations (Fig. 6). 
Φ values were segregated into populations and a minimum sum 
squared deviation (SSQ) was computed. We tested values of n up 
to and including 6, and, in order to fi nd the global minimum 
SSQ, for each trial we used 50 different random starting assign-
ments. The weight for each Φ-value was the inverse of the SEM 
obtained from the unweighted linear fi t of the REFER. 

All structures were displayed by using PYMOL (DeLano 
Scientifi c).

Online Supplemental Material
The supplementary animation shows the timing of domains mo-
tions in C-–O gating. The frame sequence was generated by simu-
lation (QUB) using the model C↔X1↔X2↔X3↔X4↔O, where 
C is stable-closed, O is stable-open, and X is a short-lived, noncon-
ducting intermediate state. The rate constants (ms−1) for the in-
dividual steps were: C→X1 = 5.3, X1→X2 = X2→X3 = X3→X4 = 

X4→O = 6000, X1→C = 2370, X2→X1 = 5598, X3→X2 = 4716, 
X4→X3 = 12000, and O→X4 = 9.09. Each of the bitmaps were 
made by using PYMOL (the domain motions are arbitrary) and 
assembled into a movie by using Videomach. 

R E S U LT S

M2–M3 Linker
In all vertebrate α1 subunits the residues between the 

C terminus of M2 and the N terminus of M3 (positions 

270–276) are completely conserved: AVPLIGK. Table I gives 

the sequence alignment for other mouse AChR subunits, 

and Fig. 1 shows the structure of this M2–M3 linker region 

in the Torpedo α subunit (2bg9.pdb; Unwin, 2005). The 

core of the M2–M3 linker is the sequence PLIG (residues 

272–275). In mouse, in 16 AChR subunit sequences the 

Pro and Leu are completely conserved and the Ile and Gly 

residues are present in 12 and 13 sequences, respectively.

Previously, S269 (in M2) and Y277 (in M3) were found 

to have signifi cantly different Φ values, 0.65 ± 0.06 

(Mitra et al., 2005) and 0.34 ± 0.11(Cadugan and 

Auerbach, 2007). We attempted to measure Φ for all 

seven of the intervening residues (Figs. 2 and 3; Table II). 

At three positions, 11 different mutants exhibited ap-

proximately wild-type gating kinetics (V271→F, I, T, 

and W; L273→T, V, and Y; K276→A, D, I, and W) and for 

these residues a Φ-value could not be estimated. At the 

remaining four positions at least one mutation caused a 

>10-fold change in Keq and a Φ-value could be estimated. 

The order of sensitivity, based on the magnitude of the 

Figure 4. The mutation I274 shows wild-type 
binding properties. Interval durations were 
obtained at three different ACh concentra-
tions (30, 50, and 100 μM) and the associa-
tion and dissociation rate constants were 
estimated by fi tting with a kinetic scheme that 
assumed two equal and independent trans-
mitter binding steps followed by a single 
gating step (dead time = 35, 75, and 35 μs, 
respectively). Left, interval duration histograms 
and square-root probability density functions 
(solid lines) calculated from the globally 
optimized rate constants. Right, an example 
cluster at each concentration. Total number 
of events analyzed were 48,776. The optimal rate 
constants were: k+ (single-site association) = 
141 μM−1s−1, k- (single-site dissociation) = 
14,781 s−1. We calculate Kd (k−/k+) = 105 μM. 
For comparison, one estimate for wild-type 
AChRs is k+ = 169 μM−1s−1 and k− = 16,904 s−1, 
Kd= 100 μM (Akk et al., 1996). There is no 
signifi cant effect of this mutation on ACh bind-
ing to closed AChRs.
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TA B L E  I I I

Rate and Equilibrium Constants

Construct ko (s−1) kc
obs (s−1) kc

cor (s−1) Keq Agonist Fold-change in Keq (mut/wt) n

wta 120 834 2583 0.046 Cho 1

wtb 48000 1700  28.2 ACh 1

A270T 25332 (1645) 2692 (611) 3365 (764) 7.53 (1.8) ACh 0.27 3

A270W 591 (38) 319 (79) 852 (212) 0.69 (0.18) Cho 15.0 4

A270F 1717 (70) 346 (36) 924 (96) 1.86 (0.15) Cho 40.4 3

V271W 58 (5.2) 532 (36) 1420 (97) 0.04 (0.002) Cho 0.87 3

V271I 160 (13) 988 (72) 2638 (193) 0.06 (0.007) Cho 1.3 3

V271T 36283 (3899) 972 (71) 1215 (89) 29.9 (5.4) ACh 1.06 2

V271F 36 (2) 161 (9) 430 (25) 0.08 (0.006) Cho 1.73 3

P272G 2737 (274) 4821 (141) 6026 (364) 0.45 (0.03) ACh 0.02 4

P272S 29600 (1751) 3252 (141) 4065 (995) 7.28 (2.2) ACh 0.26 4

P272A 2431 (42) 83 (131) 222 (46) 10.9 (1.3) Cho 237 4

L273V 20967 (931) 2649 (146) 3311 (182) 6.3 (1.0) ACh 0.22 3

L273T 32496 (1345) 2486 (313) 3108 (391) 10.45 (2.0) ACh 0.37 3

L273Y 25825 (3001) 1791 (586) 2239 (732) 11.53 (4.0) ACh 0.40 3

I274V 16057 (455) 1770 (278) 2213 (347) 7.25 (1.2) ACh 0.25 3

I274L 26707 (1291) 3494 (257) 4368 (321) 6.11(0.68) ACh 0.21 3

I274F 6210 (499) 4608 (448) 5760 (561) 1.07 (0.18) ACh 0.04 3

I274T 439 (59) 25085 (1093) 31354 (1366) 0.014 (0.002) ACh 0.0005 5

G275L 36716 (1028) 3189 (293) 3986 (366) 9.21 (0.60) ACh 0.32 3

G275S 28365 (3174) 3915 (710) 4894 (888) 5.79 (0.52) ACh 0.21 2

G275P 3380 (183) 8510 (439) 10638 (549) 0.32 (0.03) ACh 0.01 3

K276D 35 (3) 492 (43) 1314 (116) 0.03 (0.004) Cho 0.65 2

K276A 31689 (4998) 2778 (219) 3473 (273) 9.12 (0.83) ACh 0.33 3

K276W 16628 (2353) 1942 (35) 2428 (43) 6.84 (0.88) ACh 0.24 3

K276I 42316 (4227) 5985 (418) 7481 (522) 5.65 (0.69) ACh 0.20 3

V132A 11949 (1755) 2658 (192) 3322 (240) 3.59 (0.79) ACh 0.13 2

V132I 3093 (263) 1579 (270) 1973 (337) 1.57 (0.14) ACh 0.06 3

V132H 1436 (232) 1860 (201) 2325 (252) 0.62 (0.05) ACh 0.20 3

V132F 135 (38.5) 10250 (795) 12812 (994) 0.01 (0.004) ACh 0.0004 2

T133A 16211 (1320) 1940 (143) 2425 (178) 6.68 (0.59) ACh 0.24 3

T133F 7321 (776) 1364 (117) 1705 (146) 4.3 (0.50) ACh 0.15 3

T133V 15793 (1971) 2259 (1190) 2824 (1488) 5.59 (3.11) ACh 0.20 2

T133H 16751 1915 2394 6.99 ACh 0.25 1

T133I 17257 (1666) 2127 (312) 2659 (390) 6.5 (1.61) ACh 0.23 2

T133S 21966 1658 2072 10.6 ACh 0.37 1

H134Sc 18474 2506 7.37 ACh 0.26

H134R 14730 (385) 2496 (172) 3120 (215) 4.79 (0.4) ACh 0.17 4

H134Q 8884 (659) 2599 (248) 3249 (310) 2.79 (0.3) ACh 0.1 3

F135T 8978 (1227) 2833 (784) 3541 (980) 2.53 (0.32) ACh 0.09 3

F135Y 99 669 1786 0.05 Cho 1.08 1

F135L 7080 (794) 3552 (331) 4441 (413) 1.59 (0.33) ACh 0.06 2

F137L 248 (44) 875 (165) 2336 (441) 0.11 (0.04) Cho 2.4 3

F137Y 69 (5) 783 (57) 2091 (152) 0.03 (0.004) Cho 0.66 3

ko, apparent opening rate constant; kc
obs, apparent closing rate constant; kc

cor, closing rate constant after correction for channel block; n, number of 

patches. Values are mean (±SEM). No rate constants are reported for P136G, A, S, and Y because no currents were detected for these constructs (5 patches 

each, 10 min/patch).
aFrom Mitra et al. (2005).
bFrom Chakrapani and Auerbach (2005).
cFrom Chakrapani et al. (2004).

largest excursion in Keq for a point mutation (in both 

α subunits), was P272 (A→G) > I274 (I→T) > A270 

(F→T) > G275 (G→P) (Table III). At A270 and P272 the 

mutations could either increase or decrease Keq, whereas 

at the other positions the mutations only decreased 

Keq or had no effect (Fig. 3). In summary, the P I and 

G of the core, and the A at the terminus of M2, were 

sensitive to mutation.
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Fig. 3 plots the experimentally determined kinetic 

parameters in the form of rate-equilibrium free energy re-

lationships (REFERs), the slope of which (around Keq = 1) 

is called Φ. The Φ values for all four mutation-sensitive 

residues ranged from 0.62 ± 0.05 (P272) to 0.65 ± 0.07 

(L270) (Table II). Overall, the mean value was 0.64, which 

is the same as those for many residues in the M2 helix 

(S269, V259, L258, L257, and F256) (Grosman et al., 

2000a; Mitra et al., 2005; Purohit et al., 2007). The Φ-value 

was approximately independent of the agonist used 

to activate the protein (see the REFERs for A270 and 

P272, Fig. 3).

Fig. 4 shows currents elicited by different concentra-

tions of ACh for one M2–M3 linker mutation, I274F. 

The mutation had a large effect on Keq but essentially 

no effect on Kd, the equilibrium dissociation constant for 

ACh binding to closed AChRs.

Cys-loop
In the Torpedo AChR structure model, atoms from three 

cys-loop residues (Fig. 1) contact (<4 Å) residue I274 in 

the M2–M3 linker: V132, T133, and P136. We examined 

the effects of mutations of these three residues, plus 

H134, F135, and F137 (Table III).

Fig. 5 A (right) shows a REFER analysis for four muta-

tions of position V132 (I, H, A, and F). All of the muta-

tions decreased Keq (by up to 2,800-fold, for V→F) and 

the Φ-value was 0.75 ± 0.08 (Table II). Fig. 5 B (right) 

shows that six mutations of position T133 were exam-

ined (V, A, S, H, I, and F) but the net effect on Keq was 

only approximately sixfold, so no estimate of Φ was ob-

tained. Fig. 5 C (right) and D (right) show the results 

for H134 (Q, R, and S) and F135 (Y, L, and T). Here, at 

least one mutation decreased Keq >10-fold, and corre-

sponding Φ values for these two positions were 0.71 ± 

0.03 and 0.75 ± 0.12, respectively. No functional AChRs 

could be recorded whatsoever for G, A, S, and Y muta-

tions of position P136 (fi ve patches each, �10 min per 

patch). We do not know if these AChRs fail to express 

or express and fail to gate. Two mutations of F137 

(L and Y) exhibited a less than threefold change in Keq 

(Table III).

Φ Populations and Coupling
Fig. 6 shows the results of using a statistical test (k- 

means) to ascertain the number of populations of Φ 
for residues in loop 2, the cys-loop, the M2–M3 linker, 

and the M2 helix of the α-subunit, and to assign each 

residue to one of these populations. The most likely 

number of populations is two. Residues in loop 2 and 

the cys-loop belong with the group having a mean Φ 

of 0.77 ± 0.02, and those in the M2–M3 linker and 

M2 group belong to the group having a mean Φ of 

0.63 ± 0.02.

We next measured the coupling energy between 

I274V in the M2–M3 linker and V132I in the cys-loop. 

We chose these mutations because each causes a sub-

stantial decrease in Keq (3.9- and 17.9-fold, respectively), 

and because in 2bg9.pdb the distance between these two 

residues is <4 Å. Combined, these two mutations caused 

a 161-fold decrease in Keq, whereas independent ac-

tion predicts that would be only a 69-fold decrease in 

Keq. This result indicates that there is a modest degree 

of coupling between the I274 and V132 side chains 

(+0.51 kcal/mol).

D I S C U S S I O N

In the α-subunit, about half of the residues in the 

M2–M3 linker and the cys-loop that have been exam-

ined so far substantially change Keq. This indicates that 

these amino acids experience a change in energy be-

tween C and O, which implies a change in structure, 

which implies a gating movement. Clearly, the ECD–TMD 

interface is a dynamic zone in the diliganded gating TR. 

The biggest observed energy changes occur in I274 and 

P272 in the M2–M3 linker and in V132 in the cys- loop. 

Note that the cys-loop analysis is not yet complete be-

cause four residues have not yet been examined in detail 

(E129, I130, I131, and E139).

The M2–M3 linker and many M2 residues have 

approximately the same Φ-value, �0.64 (Grosman et al., 

2000a; Mitra et al., 2005; Purohit et al., 2007). This 

group constitutes the third Φ-block to move in the 

α-subunit in the channel-opening process. Φ � 0.93 for 

the fi rst block (the region surrounding the transmitter 

binding sites) and Φ � 0.77 for the second block (cys-

loop and loop 2). If Φ values provide the relative timing 

of gating motions, then this pattern suggests that in the 

TR the motions of the M2–M3 linker and many positions 

in M2, including residues near equatorial “gate” and the 

intracellular domain, are approximately synchronous 

and occur after the motions of the binding sites and 

loop 2 and the cys-loop. Note that Φ values for M2 

residues 260–268 have not yet been reported so we can-

not be certain that the M2–M3 linker and the gate 

motions occur by the movement of a contiguous struc-

tural element.

The average Φ-value for V132, H134, and F135 was 

0.73, which makes these residues members of the sec-

ond α-subunit gating block (Φ � 0.77; Fig. 6). Additional 

members of this Φ-block include other cys-loop residues 

(D138, Q140), residues in loop 2 (E45, V46, N47, Q48), 

and Y127 on β-strand 6. In the AChR α-subunit, the 0.77 

Φ-block is a slab (�6 nm3) that is interposed between 

the transmitter binding site and the top of the TMD 

(Fig. 7). Because V132 is close to P272 and I274 in the 

M2–M3 linker, these amino acids may participate in 

the propagation of the conformational wave between the 

0.77 and 0.63 Φ blocks.

There is an abrupt, step decrease in Φ (�0.3 units) be-

tween G275 in the M2–M3 linker and Y277 in the M3 helix. 
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The intervening residue, K276, is not sensitive to muta-

tion (to A, D, I, or W) and therefore does not experience 

a change in energy between C and O. In 2bg9.pdb the at-

oms of residues G275 and Y277 are separated by <4 Å, yet 

G275 and its neighbor I274 are part of the Φ = 0.63 

block, whereas Y277 is part of the Φ = 0.31 block. Hence, 

by defi nition, G275 and Y277 are at a Φ-block boundary. 

The breakpoint in Φ at K276 suggests that this residue is 

a point of fl exure about which the M2 and M3 helices 

move, asynchronously, during gating. A similar pattern of 

a nonmoving residue interposed between amino acid 

members of two different Φ blocks (also have a different 

in Φ of �0.3 units) was previously observed in the M2 he-

lix of the δ and α subunits (Cymes et al., 2002; Mitra et al., 

2005). A nonmoving residue at a Φ-block boundary may 

be a common, but not absolute, feature of the Φ- map.

Insofar as a change in Keq indicates movement and Φ 

gives relative temporal information, we can place the 

cys-loop and M2–M3 linker movements into the overall 

framework for the α-subunit channel-opening process 

(see Video 1, available at http://www.jgp.org/cgi/

content/full/jgp.200709856/DC1). First, residues near 

the transmitter binding sites (loops A, B, and C) move 

(Φ ≈ 0.93; purple; Grosman et al., 2000b; Chakrapani 

et al., 2003) followed by residues in loop 2 and the cys-

loop (Φ ≈ 0.77; orange; Chakrapani et al., 2004). The 

next group to move is the Φ ≈ 0.63 block (green), 

which includes the M2–M3 linker and much of M2 

(Grosman et al., 2000a; Mitra et al., 2005; Purohit et al., 

2007). This map of Φ values is consistent with the no-

tion that during channel opening the presence of an 

agonist triggers the gating motions of loops A, B, and C, 

Figure 5. Kinetic analysis of cys-loop residues. (A) Ex-
ample clusters and REFER for αV132. The Φ-value was 
0.75. (B) Example clusters and REFER for αT133. The 
change in Keq was too small to allow an estimation of Φ. 
(C) Example clusters and REFER for αH134. The Φ-
value was 0.71. (D) Example clusters and REFER for 
αF135. The Φ-value was 0.75. The wild-type side chain is 
boxed. The agonist was either ACh (500 μM, closed cir-
cles) or choline (20 mM, open circles).

D
ow

nloaded from
 http://rupress.org/jgp/article-pdf/130/6/547/1912139/jgp_200709856.pdf by guest on 24 April 2024



556 Φ-Value Analysis of the AChR αM2–M3 Linker

which trigger those in the cys-loop and loop 2, which 

trigger those in the M2–M3 linker and in many M2 resi-

dues. Subsequent α-subunit motions are three residues 

near the middle of M2 (Purohit et al., 2007) and in M4 

(Φ ≈ 0.54; blue; Mitra et al., 2004; Purohit et al., 2007), 

followed by two M2 equatorial residues plus M3 and preM1 

(Φ ≈ 0.31; red; Mitra et al., 2005; Cadugan and Auerbach, 

2007; Purohit et al., 2007; Purohit and Auerbach, 2007a). 

We imagine that the Φ-block gating motions are sequen-

tial and stochastic, and that the structural transitions of 

the TR occur as a random walk, with the conformational 

dynamics of AChR gating characterized by brownian 

motion of approximately nanometer-sized domains. We 

estimate that the time scale of the individual Φ-block 

motions is in the �50-ns range (Auerbach, 2005).

The results shed some light on the mechanisms that 

have been proposed for the propagation of the AChR 

channel opening conformational cascade between ECD 

and the TMD (the cys-loop/loop 2 and M2–M3 linker/

M2 Φ blocks). The structure-motivated suggestion of a 

steric interaction (“pin-into-socket”) between loop 2 

and M2 (V46↔S269; Miyazawa et al., 2003) is supported 

by three functional observations: (1) Φ values decrease 

abruptly between these two residues (0.78 and 0.65, 

respectively), (b) the hydrophobicity of the side chains 

at both positions is correlated with the magnitude of 

the change in Keq (Chakrapani et al., 2004), and (3) the 

effects of mutations at these two sites are coupled ener-

getically (Lee and Sine, 2005). In addition, we fi nd that 

A270 (in M2) is also sensitive to mutation and, because 

A270 and V46 are close in the Torpedo structure, we pro-

pose that this residue is an additional candidate for cou-

pling ECD and TMD gating motions. However, the 

mutation-induced changes in Keq at P272 or I274 were 

larger than those at S269 and A270, by more than a factor 

of 10 (Table III). These sensitive residues are far from the 

site of the “pin-into-socket” interaction, which suggests 

that the V46↔S269/A270 coupling energies are only part 

of the story and that other forces at other sites also con-

tribute to the total ECD↔TMD interaction energy.

With regard to the hypothesis that the isomerization 

of an M2–M3 linker proline or glycine is an important 

Figure 6. Cluster analysis of Φ values. The Φ values for the indi-
cated α-subunit residues (in the M2 helix, M2–M3 linker, cys-loop, 
and loop 2) were grouped into populations by using a segmental 
k-mean algorithm (see Materials and methods). Inset, the sum 
squared deviation (SSQ) decreases sharply between 1 and 2 pop-
ulations and gradually thereafter, indicating that the most likely 
number of Φ populations is two. The mean ± SEM values for 
these populations (dashed lines) are shown. Each residue was as-
signed either to the Φ = 0.77 population (open triangles) or the 
Φ = 0.63 population (fi lled circles). The error bars on Φ are 
±SD. Y127 and residues in loop 2 and the cys-loop belong to the 
0.77 population, and many residues in M2 and the M2–M3 linker 
belong to the 0.63 population. L2 and L7 are the mean Φ values 
for loop 2 and cys-loop residues measured by Chakrapani et al. 
(2004). Other sources: M2 (Mitra et al., 2005; Purohit et al., 
2007), E45 (Purohit and Auerbach, 2007a), and Y127 (Purohit 
and Auerbach, 2007b).

Figure 7. The ECD–TMD interface. The M2–M3 linker residues 
that were sensitive to mutation are labeled (P272 > I274 > G275 > 
A270). (A) Side view, from the middle of the ε-subunit. The lu-
men of the pore is to the right and the membrane bilayer is to the 
left.Orange, cys-loop (left) and loop 2 (right). Green, M2–M3 
linker. Red, residue Y277. The N terminus of the M3 helix is Y277 
and the C-terminus of the M2 helix is A270 (see Fig 1). (B) Radial 
view, from the bilayer.
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event in gating, the observation that P, S, and L substitu-

tions at G275, and G, S, and A substitutions at P272 yield 

functional AChRs indicates that a substantial change in 

the angle of backbone atoms at either of these two posi-

tions is not an absolute requirement for the propaga-

tion of the opening conformational change between 

the ECD and TMD. It is therefore unlikely that a full 

cis–trans isomerization of the M2–M3 linker backbone 

is the “trigger” for gating in muscle AChRs, although 

a partial isomerization of these bonds may occur in the 

C↔O process.

The M2–M3 linker and cys-loop are key structural ele-

ments governing the propagation of the channel-opening 

and -closing conformational changes between the ECD 

and TMD. Although we still do not know the precise 

molecular forces that underpin the ECD↔TMD con-

nection, the results indicate that they are spread along 

a broad, �16-Å boundary that projects radially from 

the lumen of the pore (residues S269 and A270) to the 

lipid bilayer. This interface contains atoms from loop 2 

and the cys-loop in the ECD, and (at least) M2, M3, and 

M4 in the TMD, and includes more than a dozen amino 

acids (Fig. 7). Our result do not support the notion that 

a single interaction is the “key” event in the C↔O tran-

sition. Rather, we think that at the ECD–TMD hydro-

phobic interactions, charge/dipolar interactions, and, 

perhaps, small changes in the angles of backbone bonds 

all contribute to the energy barrier that separates C 

from O. Finally, it is important to note that residues in 

the M2–M3 linker and cys-loop in other subunits, and in 

nearby segments in all subunits (loop 9, the β10–M1 

linker, and M1–M4) may also serve to link ECD–TMD 

gating motions in the AChR.

We would like to thank Mary Teeling, Mary Merritt, and Birte 
Steidl for technical assistance.

This work was supported by the National Institutes of Health 
(NS-23513).

Olaf S. Andersen served as editor.

Submitted: 17 July 2007
Accepted: 7 November 2007

R  E  F  E  R  E  N  C  E  S 
Akk, G., S. Sine, and A. Auerbach. 1996. Binding sites contribute 

unequally to the gating of mouse nicotinic alpha D200N acetyl-

choline receptors. J. Physiol. 496:185–196.

Auerbach, A. 2005. Gating of acetylcholine receptor channels: 

brownian motion across a broad transition state. Proc. Natl. Acad. 
Sci. USA. 102:1408–1412.

Auerbach, A. 2007. Ηow to turn the reaction coordinate into time. 

J. Gen. Physiol. 130:543–546.

Auerbach, A., and G. Akk. 1998. Desensitization of mouse nicotinic 

acetylcholine receptor channels. A two-gate mechanism. J. Gen. 
Physiol. 112:181–197.

Boehr, D.D., H.J. Dyson, and P.E. Wright. 2006. An NMR perspec-

tive on enzyme dynamics. Chem. Rev. 106:3055–3079.

Bouzat, C., F. Barrantes, and S. Sine. 2000. Nicotinic receptor 

fourth transmembrane domain: hydrogen bonding by conserved 

threonine contributes to channel gating kinetics. J. Gen. Physiol. 
115:663–672.

Cadugan, D.J., and A. Auerbach. 2007. Conformational dynamics 

of the αM3 transmembrane helix during acetylcholine receptor 

channel gating. Biophys. J. 93:859–865.

Campos-Caro, A., S. Sala, J.J. Ballesta, F. Vicente-Agullo, M. Criado, 

and F. Sala. 1996. A single residue in the M2-M3 loop is a major 

determinant of coupling between binding and gating in neuro-

nal nicotinic receptors. Proc. Natl. Acad. Sci. USA. 93:6118–6123.

 Castillo, M., J. Mulet, J.A. Bernal, M. Criado, F. Sala, and S. Sala. 2006. 

Improved gating of a chimeric α7-5HT3A receptor upon muta-

tions at the M2-M3 extracellular loop. FEBS Lett. 580:256–260.

Chakrapani, S., and A. Auerbach. 2005. A speed limit for conforma-

tional change of an allosteric membrane protein. Proc. Natl. Acad. 
Sci. USA. 102:87–92.

Chakrapani, S., T.D. Bailey, and A. Auerbach. 2003. The role of 

loop 5 in acetylcholine receptor channel gating. J. Gen. Physiol. 
122:521–539.

Chakrapani, S., T.D. Bailey, and A. Auerbach. 2004. Gating dy-

namics of the acetylcholine receptor extracellular domain. J. Gen. 
Physiol. 123:341–356.

Cheng, X., I. Ivanov, H. Wang, S.M. Sine, and J.A. McCammon. 2007. 

Nanosecond time scale conformational dynamics of the human α7 

nicotinic acetylcholine receptor. Biophys J. 93:2622–2634.

Colquhoun, D., and A.G. Hawkes. 1981. On the stochastic prop-

erties of single ion channels. Proc. R. Soc. Lond. B. Biol. Sci. 
211:205–235.

Corradi, J., G. Spitzmaul, M.J. De Rosa, M. Costabel, and C. Bouzat. 

2007. Role of pairwise interactions between M1 and M2 domains 

of the nicotinic receptor in channel gating. Biophys. J. 92:76–86.

Croxen, R., C. Newland, D. Beeson, H. Oosterhuis, G. Chauplannaz, 

A. Vincent, and J. Newsom-Davis. 1997. Mutations in different 

functional domains of the human muscle acetylcholine receptor 

alpha subunit in patients with the slow-channel congenital myas-

thenic syndrome. Hum. Mol. Genet. 6:767–774.

Cymes, G.D., C. Grosman, and A. Auerbach. 2002. Structure of the 

transition state of gating in the acetylcholine receptor channel 

pore: a phi-value analysis. Biochemistry. 41:5548–5555.

Edelstein, S.J., and J.P. Changeux. 1998. Allosteric transitions of the 

acetylcholine receptor. Adv. Protein Chem. 51:121–184.

Elenes, S., and A. Auerbach. 2002. Desensitization of diliganded 

mouse muscle nicotinic acetylcholine receptor channels. J. Physiol. 
541:367–383.

Elmslie, F.V., S.M. Hutchings, V. Spencer, A. Curtis, T. Covanis, R.M. 

Gardiner, and M. Rees. 1996. Analysis of GLRA1 in hereditary 

and sporadic hyperekplexia: a novel mutation in a family coseg-

regating for hyperekplexia and spastic paraparesis. J. Med. Genet. 
33:435–436.

Grosman, C., and A. Auerbach. 2000. Asymmetric and indepen-

dent contribution of the second transmembrane segment 12’ 

residues to diliganded gating of acetylcholine receptor channels: 

a single-channel study with choline as the agonist. J. Gen. Physiol. 
115:637–651.

Grosman, C., F.N. Salamone, S.M. Sine, and A. Auerbach. 2000a. 

The extracellular linker of muscle acetylcholine receptor chan-

nels is a gating control element. J. Gen. Physiol. 116:327–340.

Grosman, C., M. Zhou, and A. Auerbach. 2000b. Mapping the 

conformational wave of acetylcholine receptor channel gating. 

Nature. 403:773–776.

Grutter, T., L.P. de Carvalho, V. Dufresne, A. Taly, S.J. Edelstein, 

and J.P. Changeux. 2005. Molecular tuning of fast gating in 

pentameric ligand-gated ion channels. Proc. Natl. Acad. Sci. USA. 

102:18207–18212.

Jardetzky, O. 1996. Protein dynamics and conformational transi-

tions in allosteric proteins. Prog. Biophys. Mol. Biol. 65:171–219.

D
ow

nloaded from
 http://rupress.org/jgp/article-pdf/130/6/547/1912139/jgp_200709856.pdf by guest on 24 April 2024



558 Φ-Value Analysis of the AChR αM2–M3 Linker

Karlin, A. 2002. Emerging structure of the nicotinic acetylcholine 

receptors. Nat. Rev. Neurosci. 3:102–114.

Karplus, M., and J. Kuriyan. 2005. Molecular dynamics and protein 

function. Proc. Natl. Acad. Sci. USA. 102:6679–6685.

Kash, T.L., A. Jenkins, J.C. Kelley, J.R. Trudell, and N.L. Harrison. 

2003. Coupling of agonist binding to channel gating in the 

GABA(A) receptor. Nature. 421:272–275.

Kusama, T., J.B. Wang, C.E. Spivak, and G.R. Uhl. 1994. Mutagenesis 

of the GABA rho 1 receptor alters agonist affi nity and channel 

gating. Neuroreport. 5:1209–1212.

Lee, W.Y., and S.M. Sine. 2005. Principal pathway coupling ago-

nist binding to channel gating in nicotinic receptors. Nature. 
438:243–247.

Lester, H.A., M.I. Dibas, D.S. Dahan, J.F. Leite, and D.A. Dougherty. 

2004. Cys-loop receptors: new twists and turns. Trends Neurosci. 
27:329–336.

Lummis, S.C., D.L. Beene, L.W. Lee, H.A. Lester, R.W. Broadhurst, 

and D.A. Dougherty. 2005. Cis-trans isomerization at a proline 

opens the pore of a neurotransmitter-gated ion channel. Nature. 
438:248–252.

Lynch, J.W., S. Rajendra, K.D. Pierce, C.A. Handford, P.H. Barry, 

and P.R. Schofi eld. 1997. Identifi cation of intracellular and extra-

cellular domains mediating signal transduction in the inhibitory 

glycine receptor chloride channel. EMBO J. 16:110–120.

Maconochie, D.J., G.H. Fletcher, and J.H. Steinbach. 1995. The 

conductance of the muscle nicotinic receptor channel changes 

rapidly upon gating. Biophys. J. 68:483–490.

Mitra, A., T.D. Bailey, and A.L. Auerbach. 2004. Structural dynamics 

of the M4 transmembrane segment during acetylcholine recep-

tor gating. Structure. 12:1909–1918.

Mitra, A., G.D. Cymes, and A. Auerbach. 2005. Dynamics of the 

acetylcholine receptor pore at the gating transition state. Proc. 
Natl. Acad. Sci. USA. 102:15069–15074.

Miyazawa, A., Y. Fujiyoshi, and N. Unwin. 2003. Structure and 

gating mechanism of the acetylcholine receptor pore. Nature. 
423:949–955.

Purohit, P., and A. Auerbach. 2007a. Acetylcholine receptor gating 

at extracellular-transmembrane domain interface: the ‘pre-M1’ 

linker. J. Gen. Physiol. 130:559–568.

Purohit, P., and A. Auerbach. 2007b. Acetylcholine receptor gating: 

movement in the α-subunit extracellular domain. J. Gen. Physiol. 
130:569–579.

Purohit, P., A. Mitra, and A. Auerbach. 2007. A stepwise mechanism 

for acetylcholine receptor channel gating. Nature. 446:930–933.

Purohit, Y., and C. Grosman. 2006. Block of muscle nicotinic receptors 

by choline suggests that the activation and desensitization gates 

act as distinct molecular entities. J. Gen. Physiol. 127:703–717.

Qin, F. 2004. Restoration of single-channel currents using the 

segmental k-means method based on hidden Markov modeling. 

Biophys. J. 86:1488–1501.

Qin, F., A. Auerbach, and F. Sachs. 1997. Maximum likelihood estima-

tion of aggregated Markov processes. Proc. Biol. Sci. 264:375–383.

Rovira, J.C., J.J. Ballesta, F. Vicente-Agullo, A. Campos-Caro, M. 

Criado, F. Sala, and S. Sala. 1998. A residue in the middle of the 

M2-M3 loop of the β4 subunit specifi cally affects gating of neuro-

nal nicotinic receptors. FEBS Lett. 433:89–92.

Salamone, F.N., M. Zhou, and A. Auerbach. 1999. A re-examination 

of adult mouse nicotinic acetylcholine receptor channel activa-

tion kinetics. J. Physiol. 516:315–330.

Schofi eld, C.M., A. Jenkins, and N.L. Harrison. 2003. A highly con-

served aspartic acid residue in the signature disulfi de loop of 

the α1 subunit is a determinant of gating in the glycine receptor. 

J. Biol. Chem. 278:34079–34083.

Shen, X.M., K. Ohno, A. Tsujino, J.M. Brengman, M. Gingold, S.M. 

Sine, and A.G. Engel. 2003. Mutation causing severe myasthenia 

reveals functional asymmetry of AChR signature cystine loops in 

agonist binding and gating. J. Clin. Invest. 111:497–505.

Shiang, R., S.G. Ryan, Y.Z. Zhu, A.F. Hahn, P. O’Connell, and J.J. 

Wasmuth. 1993. Mutations in the α1 subunit of the inhibitory gly-

cine receptor cause the dominant neurologic disorder, hyper-

ekplexia. Nat. Genet. 5:351–358.

Shiang, R., S.G. Ryan, Y.Z. Zhu, T.J. Fielder, R.J. Allen, A. Fryer, S. 

Yamashita, P. O’Connell, and J.J. Wasmuth. 1995. Mutational analy-

sis of familial and sporadic hyperekplexia. Ann. Neurol. 38:85–91.

Sine, S.M., and A.G. Engel. 2006. Recent advances in Cys-loop re-

ceptor structure and function. Nature. 440:448–455.

Unwin, N. 2000. The Croonian Lecture 2000. Nicotinic acetylcho-

line receptor and the structural basis of fast synaptic transmission. 

Philos. Trans. R. Soc. Lond. B Biol. Sci. 355:1813–1829.

Unwin, N. 2005. Refi ned structure of the nicotinic acetylcholine 

receptor at 4A resolution. J. Mol. Biol. 346:967–989.

Unwin, N., A. Miyazawa, J. Li, and Y. Fujiyoshi. 2002. Activation of 

the nicotinic acetylcholine receptor involves a switch in confor-

mation of the α subunits. J. Mol. Biol. 319:1165–1176.

Xiu, X., A.P. Hanek, J. Wang, H.A. Lester, and D.A. Dougherty. 2005. 

A unifi ed view of the role of electrostatic interactions in modulating 

the gating of Cys loop receptors. J. Biol. Chem. 280:41655–41666.

Zhou, M., A.G. Engel, and A. Auerbach. 1999. Serum choline ac-

tivates mutant acetylcholine receptors that cause slow channel 

congenital myasthenic syndromes. Proc. Natl. Acad. Sci. USA. 

96:10466–10471.

Zhou, Y., J.E. Pearson, and A. Auerbach. 2005. Φ-Value analysis of a 

linear, sequential reaction mechanism: theory and application to 

ion channel gating. Biophys. J. 89:3680–3685.

D
ow

nloaded from
 http://rupress.org/jgp/article-pdf/130/6/547/1912139/jgp_200709856.pdf by guest on 24 April 2024



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile (U.S. Prepress Defaults)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 299
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 299
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


