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DCs are critical for initiating immunity. The current paradigm in vaccine biology is that DCs
migrating from peripheral tissue and classical lymphoid-resident DCs (cDCs) cooperate in
the draining LNs to initiate priming and proliferation of T cells. Here, we observe subcuta-
neous immunity is Fms-like tyrosine kinase 3 ligand (FIt3L) dependent. FIt3L is rapidly
secreted after immunization; FIt3 deletion reduces T cell responses by 50%. FIt3L enhances
global T cell and humoral immunity as well as both the numbers and antigen capture ca-
pacity of migratory DCs (migDCs) and LN-resident ¢DCs. Surprisingly, however, we find immu-
nity is controlled by cDCs and actively tempered in vivo by migDCs. Deletion of Langerin* DC
or blockade of DC migration improves immunity. Consistent with an immune-regulatory
role, transcriptomic analyses reveals different skin migDC subsets in both mouse and human
cluster together, and share immune-suppressing gene expression and regulatory pathways.
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These data reveal that protective immunity to protein vaccines is controlled by FIt3L-

dependent, LN-resident cDCs.

Human vaccines are delivered through skin, com-
monly by the s.c. route, allowing access to a rich
network of DCs in skin and skin-draining LNs
(Romani et al.,2010). s.c. injected vaccine antigens
reach LNs that drain the skin and epithelial sur-
faces by passive transport through lymphatics or
by DC antigen capture followed by subsequent
cell-bound trafficking to the LNs, where T cell
priming occurs (Itano et al., 2003). Resident
DCs and several distinct migratory DC subsets
(migDCs) that traffic to LN from skin are pres-
ent in LNs (Forster et al., 1999; Henri et al.,
2010b).The current paradigm is that both LN-
resident DCs and migDCs have access to s.c. de-
livered antigen, are requisite, and cooperate to
induce immunity (Itano et al., 2003; Allenspach
et al., 2008). Based on this paradigm, vaccinol-
ogy efforts have focused heavily on delivery of
antigens to skin-resident DCs.
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FIt3L is a DC hematopoietin that maintains
DC numbers at set levels throughout adult life
(Liu et al., 2007, 2009) and at sites relevant to
vaccination, including the skin and skin-draining
LN (Brasel et al., 1996; Maraskovsky et al.,
1996). In healthy individuals, FIt3L is tightly
regulated and at the limits of detection by ELISA;
notably, it is 20-fold lower than CSF-1 or c-kit
ligand (Shadle et al., 1989; Langley et al., 1993;
Lyman and McKenna, 2003). FIt3L is secreted
during acute infection, however, leading to DC-
mediated support of NK function (Eidenschenk
et al., 2010; Guermonprez, 2012). During s.c.
immunization, the composition of DC subsets
in the skin-draining LNs is transiently altered
(Kastenmiiller et al., 2011). It is unknown if FIt3L
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is secreted during immunization to regulate DC expansion
acutely or if Flt3 signaling is required for productive immunity.

FIt3L and its receptor (Flt3, FLK2) instruct progenitors
along a DC developmental pathway regulating the mobilization
of preDCs from the blood to give rise to IFN-a—producing
PDC, CD8a*, and CD8a¢ ¢DCs in lymphoid organs and
tissue-resident DCs such as Langerin*CD103* DCs in skin
(Waskow et al., 2008). Lymphoid CD8a* (Bozzacco et al.,2010)
and tissue CD103* DCs both cross-present antigens (the major
pathway of tumor and viral antigen presentation), derive from
preDCs (Ginhoux et al., 2009), and share Flt3L developmental
dependence (Liu et al., 2009), with common regulation down-
stream of Flt3 by mTOR (Sathaliyawala et al., 2010). These
findings suggest DC ontogeny may dictate function, one ra-
tionale for the use of hematopoetins to selectively drive DC
development for clinical use. FIt3L is being reintroduced to
the clinic to potentiate human vaccines. It is unclear if bias by
FIt3L to cross-presenting DCs from skin and LN may be ex-
ploited for protein-based vaccine delivery. Also, Langerin™
CD103* DCs, which are tissue-resident migDCs originating
from skin, are specialized to cross-present viral antigens to T cells
during cytolytic infection (Bedoui et al., 2009a). However, their
role in immunization to viral antigens has not been established.

‘We observe Flt3 is required for robust immunity to s.c. im-
munization and can enhance immunity. Surprisingly, we find
that irrespective of FIt3L treatment, migDCs in the LN (includ-
ing Langerin® CD 103" cross-presenting DCs) are not required
for CD4" T cell effector function, despite having greater effi-
ciency of s.c. protein capture in the LN than resident CD8a
cDCs. Impairing DC migration from skin to the sdLN via
knockout of the CCR7 receptor and deletion of migDC subsets
including Langerint*CD103* DCs enhanced, not diminished,
immune priming. Rather, the immune response develops
through CD11c* ZBTB46-dependent cDCs. Transcriptomics
in mouse and human reveal migDC subsets from skin relate
most closely to each other and share gene signatures related to
dampening of DC and T cell activation. Thus, we demonstrate
that the immune response is controlled by cDCs in lymphoid
tissue and that tissue microenvironment may confer immuno-
suppressive DC function in vivo.

RESULTS

s.c. immunity is FIt3L dependent

To assess if FIt3L is detected after immunization, we compared
serum murine Flt3L levels by ELISA before and after immuni-
zation with adjuvant and a vaccine that targets protein antigens
to DCs in vivo using antibodies directed against the C-type
lectin CD205. Elevated Flt3L was detected in serum within 1 h
of administering adjuvant with 0.5 pg of HIV gag p24-aCD205
fusion antibody (aCD205-gag p24; Fig. 1 A). As adjuvant,
we tested both GLA-SE (glucopyranosyl lipid adjuvant-stable
emulsion), which acts through TLR 4 (Duthie et al.,2011; Pantel
et al., 2012), and the adjuvant polyIC(LC) (polyinosinic-
polycytidylic acid stabilized with polylysine double-stranded
RNA and carboxymethylcellulose), which is a double-stranded
DNA mimic that signals through TLR3 (Schulz et al., 2005)
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and MDA5 (Gitlin et al., 2006). To assess if Flt3 signaling was
required, we compared prime-boost immunization with 0.5 pg
aCD205-gag p24 vaccine with GLA-SE in control versus
Flt37/~ mice. Flt37/~ mice consistently had 50% lower vaccine
responses (Fig. 1 B). Collectively, these data suggest FIt3L is se-
creted after adjuvant administration with protein immuniza-
tion and Flt3 signaling is required for optimal immunity.

To assess the impact of FIt3L on s.c. immunization, we
treated mice with Flt3L or PBS surrounding prime-boost im-
munization with GLA-SE (Fig. 1 C). Upon antigen recall, we
observed markedly increased IFN-vy production in CD4*
T cell isolated from spleen when challenged with HIV-gag
p24, but not control p17 peptides (Fig. 1 D and Fig. S1, gating).
Flt3L-treated mice had enhanced antigen-specific clonal ex-
pansion in vitro (CFSE"¥, IFN-y*) and enhanced CD4 T cell
IFN-y responses ex vivo when isolated from draining LN,
lung parenchyma, and small intestinal lamina propria as assayed
by intracellular cytokine staining (ICS). Improved titers of
serum IgG directed against gag p24 were observed. To deter-
mine if Flt3L-improved protein immunization is adjuvant spe-
cific, we also tested polyIC(LC) as adjuvant (Fig. 1 E).We again
observed enhanced CD4 IFN-y recall, CD4" clonal expan-
sion, mucosal immunity, and HIV gag p24-specific IgG titers.

To determine if Flt3L potentiates both soluble and DC-
targeted protein vaccines, we immunized mice with soluble
versus aCD205-targeted gag p24 and GLA-SE. FIt3L im-
proved soluble and DC-targeted responses (Fig. 2 A). At high
antigen dose (5 pg) irrespective of Flt3L treatment, no differ-
ence was observed when comparing soluble to targeted vac-
cine responses. However, at 0.5 pg, antibody-mediated antigen
targeting imparted a significant benefit to immunization. This
effect was not dose-sparing, as targeted vaccination irrespec-
tive of FIt3L treatment resulted in improved clonal prolifera-
tion with respect to soluble antigen (Fig. 2 B). Similar trends
were noted in mucosa and LNs (unpublished data). Thus, FIt3L
improves both DC-targeted and nontargeted protein immu-
nization. We established that targeting specificity through
aCD205 occurred at 0.5 pg as soluble protein immunization
lacked a discernible response at 0.5 pg (Fig. 2, A and B).

Although aCD205-gag p24 priming in primates induces
both CD4 and CD8 immunity, in B6 mice we observe only
CD4" priming due to epitope restriction (Trumptheller et al.,
2008). To assess FIt3L treatment on cross-presentation to CD8*
T cells, we examined polyclonal CD8" T cell responses after
immunization to «aCD205-OVA with polyIC(LC). CD8”*
T cell IFN-y was assayed using mixed OTTI and II recall peptides
and p24-pooled peptide controls. When assayed from lung pa-
renchyma, spleen, and lamina propria, T cells from FIt3L mice
had increased CD8* T cell IFN-y production, proliferation,
and IgG titers to OVA (Fig. 2 C). Therefore, we conclude
FIt3L enhanced cross-presentation to CD8* T cells.

FIt3L expands CD205* LN-resident cDCs and migratory

DCs and enhances in vivo ®CD205-based antigen capture
To better understand the possible mechanisms underlying FIt3L
enhancement of s.c. immunization, we examined the effect of
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Figure 1. s.c. immunity is FIt3L depen-
dent. (A) Serum from n = 3-5 mice taken
before (0 h) or at 1, 3, 6, 24, or 48 h after s.c.
immunization with 0.5 pg of «CD205 gag-
p24 and GLA (blue) or polylC(LC) (red). Error
bars show mean + SD. (B) CD4* IFN-y* intra-
cellular cytokine staining from 3 pooled
experiments of 4-5 individual WT versus
FIt3=/~ mice after s.c. vaccination with GLA +
0.5 ug aCD205 gag-p24. Open, filled, and
patterned symbols depict individual ex-
periments. Error bars show mean + SEM

(P <001). (C) Schematic of vaccine immuni-
zation schedule and FIt3L versus PBS treat-
ment. (D) CD4* T cell immunity at lymphoid
and mucosal sites and humoral immunity
after protein immunization to HIV-gag with
multiple adjuvants: GLA (D) and polyIC(LC)
(E). CD4+ IFN-y* intracellular cytokine stain-
ing from splenocytes of individual mice s.c.

PBS vaccinated with adjuvant + 5 pg aCD205

IFNy*

P82 gag-p24 in spleen, LN, lamina propria, and

lung. CD4* IFN-y* + CFSE divided T cells
after 96 h from individual immunized mice
depicted in spleen. Circles represent indi-
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FIt3L on DC subsets in the skin-draining LNs of Flt3L-treated,
control, and FI3L™/~ mice (Fig. S2, A and B, gating). Flt3L
markedly increased PDCs and ¢DCs in skin-draining LNs
(Fig. 3, A and B). PDCs are CD205~ and PDCA1* (unpub-
lished data). Within cDCs, we observed consistent expansion of
CD8a* CD11b" and CD8a# CD11bMsh ¢cDC numbers.
CD205" CD8a* DCs comprise ~40% of CD8a* ¢DCs in the
skin-draining LNs. Upon FIt3L treatment, CD205% CD8a™"
cDCs cells were enriched to 73% of cDCs (Fig. 3 B; cell surface
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control  FIt3L  PBS

and intracellular CD205 staining). In vitro CD8a ¢cDC capture
of CD205 was almost 100% efficient at 1 and 3 h, and the per-
centage of cDCs that captured alCD205 in vitro was increased
by Flt3L due to higher representation of this population (Fig. 3 C;
from 44 to 67%).This corresponded closely to the shift in total
percentage of CD205" cells (Fig. 3 B). FIt3L also contributed
to an overall expansion of total migDCs.

Five phenotypically distinct migDC populations traffic
from skin to draining LN (Henri et al., 2010a,b). Langerin™
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Figure 2.

FIt3L PBS

control

FIt3L potentiates both soluble and targeted vaccine priming and improves polyclonal CD8* T cells responses and humoral immu-

nity to OVA cross-presentation. Vaccine priming with «CD205-gag-p24 and soluble p24 at high (5 pg) and low (0.5 pg) doses in Flt3L-treated (red)
versus PBS-treated (blue) mice. (A) Intracellular cytokine stain. (B) Proliferation of CD4+ T cells measured by CFSE-diluted IFN-y* cells. One representative
experiment (n = 3 mice per group). Error bars show mean + SEM. ", P < 0.1; % P < 0.05;* P < 0.01;** P < 0.001. (C) CD8* IFN-y* intracellular cytokine
staining from individual mice vaccinated with polylC(LC) + 5 pg aCD205 OVA intraperitoneal route in spleen, lung, and lamina propria (n = 4-6 mice
pooled from 2 independent experiments). CD8* IFN-y*+ CFSE low/divided T cells at 96 h. One of two representative experiments (n = 5). Error bars show
standard error of the mean. CD8* IFN-y* intracellular cytokine staining. OVA serum total IgG, mean ELISA OD,s,. Error bars show mean + SEM across

5individual mice. ", P<0.1;*, P <0.05;*, P <0.01; ™ P < 0.001.

subsets include Langerhans cells (LCs), CD103" Langerin®
dermal DCs, and the very rare CD103~ Langerin® DCs.
Langerin~ subsets include CD11b* DCs and CD11b~ DCs.
Although some increase in Langerin* CD103" DCs occurred
after FIt3L treatment, we have observed the major expansion
of migDCs was seen in the CD11b*" and CD11b~ compart-
ment (Fig. 3 D; Mollah et al., 2014). Thus, Flt3L biases cDCs in
the cutaneous LN toward CD8a CD205" differentiation and
expands migratory CD11b*, CD11b~, and CD103* Langerin*
DCs. MigDCs express high levels of CD205* (Fig. 3 D).
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After FIt3L treatment, a small decrease in in vitro capture of
aCD205 by migDCs was apparent (from 75 to 69%; Fig. 3 E).
To determine if migDCs and LN-resident ¢cDCs in the nodes
have equal access to antigen in vivo, we compared fluor-
escently labeled aCD205 capture 3 h after s.c. injection into
Flt3L-treated and untreated mice (Fig. 3 F). MigDCs captured
antigen with greater efficiency than cDCs by aCD205-A647
label in the proximal LNs (popliteal), irrespective of Flt3L
treatment. Flt3L improved aCD205-A647 label by both
migDCs in the distal LNs (inguinal) and ¢cDCs in the proximal
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FIt3L expands classical, migratory, and plasmacytoid DC subsets in the skin draining LN and enhances antigen capture by CD205*

migratory and LN-resident cDCs in vivo. (A) Flt3L-treated (left) compared with WT (middle) and FIt3L~/~ mice (right). One representative experiment (of
three) with sample quantitation of DC subsets for two pooled skin-draining LNs. Error bars show standard deviation between 3 mice. ", P < 0.1;* P < 0.05;

* P<0.01;* P<0.001. (B) Representative CD8«* CD11b low and CD8c™ CD11b high DC subset gating, from classical (cDCs) gate of skin draining LN from
mice treated with FIt3L (left) or controls (right). Total % CD205 positive cells from within CD8c* CD11b low ¢DC subset (cell surface and intracellular stain-
ing). (C) In vitro capture of «CD205 with equivalent total skin draining LN cells from Flt3L-treated versus PBS mice gated on total LN ¢DCs versus CD8« cDCs.
One representative experiment of two with n = 3 mice per group, error bars depict SEM. * P < 0.05; **, P < 0.01;** P <0.001. (D) Skin draining LN migratory
DC subsets from within IAIE" CD11citermediate nopylation from mice treated with FIt3L (left) or controls (right). CD103* gating from within Langerin* subset.
CD205 cell surface and intracellular staining from migratory subsets (flow cytometry). (E) In vitro capture of aCD205* with equivalent total skin draining LN
cells from Flt3L-treated versus PBS mice, gated on migDC. 1 representative experiment of 2 with n = 3 mice per group, error bars depict SEM. *, P < 0.05;

* P<0.01;** P<0.001. (F) «CD205-A647 versus Isotype-A647 control antibody was injected by s.c. immunization in the footpad of control versus FIt3L-
treated recipients (n = three mice per group, one representative experiment of three, one representative FACS plot shown). At 3 h, draining (popliteal) versus
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distal (inguinal) LNs were harvested and migratory versus conventional DC subsets were gated for antibody uptake.

s.c. immunization does not depend on Langerin* DCs,
including Langerin* CD103* DCs

Previous work suggested that migratory DCs initiate immune
priming in the LN (Itano et al., 2003; Allenspach et al., 2008),

(popliteal) LNs (Fig. 3 F), suggesting improved antigen cap-
ture in vivo. Thus, in vivo migDCs in LNs captured and inter-
nalized «CD205 more rapidly than ¢cDCs, and Flt3L improved
antigen uptake by both.

JEM Vol. 211, No. 9 1879



and we observed more rapid antigen capture by migDCs in
LNs. Langerin 103* DCs are dermal migDCs that cross-prime
to virus (Bedoui et al., 2009b), yet a role in viral vaccine
priming has not been established. To address this, we used
Langerin-diphtheria toxin (DT) receptor (DTR) mice (LDTR),
where expression of the DTR in Langerin® cells permits de-
pletion of Langerin®™ DCs by DT treatment (Noordegraaf
et al., 2010). In LDTR mice, a single dose of DT leads to dele-
tion in the skin-draining LN of some Langerin® CD8a*
cDCs (Kissenpfennig et al., 2005), and all CD103* Langerin®
dermal DCs and LCs (Bennett et al., 2005; Noordegraaf et al.,
2010). Robust depletion of Langerin® migDCs occurred after
DT administration in both untreated and Flt3L-treated mice
including LC and CD103* migDCs (Fig. 4,A and B). DT was
administered 3 d and 1 d before vaccination during prime and
boost phases (schema, Fig. 4 C). At 5 pg of aCD205-gag p24
with adjuvant, all Langerin® DCs were dispensable for effi-
cient vaccine priming at baseline, and their deletion did not
diminish CD4" vaccine responses, irrespective of FIt3L treat-
ment when compared with controls administered DT at the
same dosing scheme. In some Flt3L-treated groups and in all
PBS controls (LNs, Spleen), we were surprised to note signifi-
cantly higher direct ex vivo effector responses in LDTR mice
compared with WT controls as measured by CD4 I[FN-y pro-
duction (Fig. 4, D and F).

Soluble protein immunization lacked a discernible IFN-y
or CESE response at 0.5 pg when compared with adjuvant
alone, establishing a«CD205-targeted immune response speci-
ficity that occurred at 0.5 pg (Fig. 2 A). Under high antigen
conditions, we reasoned that cDCs might capture excess anti-
gen despite the loss of Langerin* populations. At 0.5 pg,
s.c. immunization was likely not mediated through DCs in the
spleen because splenectomized and control mice had equiva-
lent responses (unpublished data). To test if Langerin®™ DCs
were required for immunization under antigen-limiting doses,
we also immunized DTR and control mice with 0.5 pg of
aCD205-gag p24 and adjuvant (Fig. 4, D-H). We were sur-
prised to note no loss of response occurred after DT treatment,
suggesting that Langerin* DC subsets were not required, even
under dose-limiting concentrations. Instead, we observed a trend
that the immediate ex vivo IFN-vy response in LN, spleen, and
lung was generally significantly higher upon ablation of Lan-
gerint DCs (Fig. 4, D-F). In vitro CD4" proliferation to
aCD205-p24 was not diminished in LDTR mice (Fig. 4 G).
We also observed higher ex vivo IgG titers after deletion of
Langerin® subsets, irrespective of FIt3L treatment, irrespective
of both FIt3L and high (not depicted) or low antigen dose
(Fig. 4 H). CD8" immunity to a«CD205-OVA was preserved
in Langerin-DTR versus B6 control mice treated with DT
(Fig. 4,1-K) and a subtly heightened trend was again observed.
This was probably not caused by enhanced antigen uptake by
cDCs in LDTR versus control mice (Fig. 4 L). Collectively,
these data suggest that Langerin®™ DCs, including LCs and
Langerin® CD103" DCs, were dispensable to CD4 or CD8
T cell priming and greater ex vivo effector and humoral immu-
nity to HIV gag was observed in the absence of Langerin® DCs.
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Blockade of migratory DC entry to the LN enhances,

not inhibits, s.c. and i.d. immunization

As described, steady-state migration of DCs from the skin to
the draining LN depends on expression of the chemokine re-
ceptor CCR7. Mice that lack CCR7 demonstrate a complete
absence of migDCs in the LN (Forster et al., 1999; Ohl et al.,
2004) irrespective of FIt3L treatment (Fig. 5 A). To further ad-
dress the contribution of migDCs to s.c. protein vaccination in
the LN, we examined vaccine responses in CCR7~/~ mice.
This allowed us to test the contribution of all migDC subsets
in the LN, including those that acquire antigen peripherally
and traffic antigen to the LN, and those that have already ar-
rived in the skin-draining LN at the time of antigen capture in
the LN. Again, at both 5 and 0.5 pg of s.c. «CD205-gag p24
all migDCs were dispensable. (Fig. 5 B). Absence of migDCs
in the skin-draining LNs of individual CCR7~/~ mice com-
pared with B6 control mice was confirmed at the time of har-
vest (Fig. 5 A and not depicted). Again, irrespective of Flt3L
treatment we noted a trend of higher mean ex vivo CD4"
IFN-vy responses in lymphoid organs and in tissue (spleen, LI,
and lung) and in vitro recall T cell proliferation in CCR7~/~
versus control mice. To ensure s.c. immunization did not by-
pass migratory DCs, we examined low-dose aCD205-gagp24
i.d. immunization into the flank (Fig. 5 C). Mice lacking
CCRY7 had significantly higher CD4" T cell IFN-y levels in
the draining proximal LN (P < 0.0001) and distally in spleen
(P < 0.05) and nondraining LNs (unpublished data). These
data suggested that blockade of CCR7-dependent DC migra-
tion to the LN enhances, not impairs, immunity.

To determine whether migratory DCs were requisite for
CDS8 immunity, we also tested s.c. aCD205-OVA immuniza-
tion. Again, no loss of CD8* T cell proliferation in CCR7 KO
mice was observed (Fig. 5 D). CCR7 KO mice may have
defects in T reg cell activity that could support enhanced
priming (Menning et al., 2007).To restrict CCR7 deficiency
to DCs, we generated mixed bone marrow chimeras with
CD45.1 and ZBTB46 DTR or CCR7 and ZBTB46DTR.
Zbtb46 is a recently described cDC-specific transcriptional
factor that distinguishes classical DCs from other mono-
nuclear phagocytic lineages and from plasmacytoid DCs
(Meredith et al., 2012; Satpathy et al., 2012). When uncom-
pensated CCR7 loss was restricted to migDCs, there was no
loss of immunity (Fig. 5 E). These mice could not be used to
evaluate whether CCR7 deficiency in migDCs leads to in-
creased immunity because ZBTB46 affects both tissue-resident
and lymphoid-resident cDCs. Therefore, CCR7-dependent
migratory DCs are not required for immunity.

ZBTB46-dependent cDCs are required for priming

To further clarify the cellular requirements for s.c. priming,
we made BM chimeras comparing chimerization of control
(CD45.1) BM to BM from several different DTR -expressing
lines after DT treatment to deplete distinct cell populations.
Chimerization was needed to avoid toxicity associated with
DT administration directly to CD11¢c-DTR mice, although
irradiated chimera recipients are older and generally have
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lower overall vaccine responses. We compared BM chime-
ras: CD45.1—-CD45.2 (control), Langerin-DTR (L-DTR)—

CD45.2, CD11c-DTR—CD45.2,

and Zbtb46 DTR

(Z-DTR)—CD45.2. IFN-y T effector responses were im-
paired ex vivo in LN and spleen in Z-DTR and CD11¢-DTR
donor BM chimeras but not in L-DTR or CD45.1 controls
with 0.5 pg of aCD205gag-p24 and GLA.The observed re-
duction was comparable to p17 controls (red vs. black; Fig. 6,
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Figure 4. Langerin* DC, including LCs and
CD103* DC, are not required for CD4 s.c.
protein immunization. (A) Deletion of
Langerin* migratory DC subsets after a single
dose (1 pug) DT administered 24 h before har-
vest. (B) Deletion of Langerin* subsets in
FIt3L-treated Langerin DTR mice administered
FIt3L daily. DT was administered —3 and —1 d
before harvest at day 8. (C) Schema: 1 ug DT
was administered to Langerin DTR mice versus
WT controls day —3 or —1 to s.c. vaccine
prime or boost with GLA plus 5 or 0.5 ug
«CD205 gag-p24. (D) Spleen, (E) LN, (F) Lung-
intracellular cytokine staining. (G) CD4* IFN-y*
CFSE divided cells in Langerin DTR versus
C57BL/6 WT mice in FIt3L-treated (red FIt3L
treated, 1 representative experiment at 5 pg,
or pooled from 2-3 independent experiments
at 0.5 pg) or PBS-treated controls (blue,
pooled from 2-3 independent experiments at
50r0.5wy; ", P<0.1;* P <005 * P<001;
** P <0.001). (H) Serum HIV gag-p24 IgG
titers in Langerin DTR versus WT mice treated
with FIt3L versus PBS (one representative
experiment of three (n = 5 mice), *, P < 0.05,
* P <0.01,** P<0.001). (I-K) 1 ug DT was
administered to Langerin DTR mice versus WT
controls day —3 or —1 to vaccine prime or
boost with s.c. polyIC(LC) plus 0.5 ug «CD205
OVA. In vitro challenge of OVA versus control
peptide. (I) Spleen, (J) LN intracellular cytokine
staining, and (K) CD8* IFN-y*+ CFSE divided
cells (n = 4-7 mice total per group pooled
from 2 independent experiments). (L) Capture
of «CD205 by classical CD8a* LN ¢DCs 3 h
after footpad injection (7.5 pg total) is im-
proved by FIt3L but not altered after Langerin*
DC ablation. 1 ug of DT was administered at
—3and —1 d, with injection and harvest on
day 0, after 9-10 d of PBS or FIt3L treatment.
(left) WT (green), Langerin-DTR mice (red).
(right) % «CD205uptake by ¢cDCs and migDCs
in the popliteal LNs. Pooled from two inde-
pendent experiments (n = 5-6 mice total;

" P<0.1;* P<005;* P<001;* P<0001).

A and B). A significant reduction in clonal expansion was ob-
served after 4 d of culture in Z-DTR and in CD11c-DTR
compared with control chimeras and littermate chimeras that
had not received DT (Fig. 6 C, blue). In L-DTR chimeras,
although radioresistant populations such as LCs were spared,
radiosensitive Langerin® CD103* migDCs were deleted. Con-
sistent with the observation that L-DTR unchimerized mice
had heightened immunity, depletion of Langerin® CD103* DCs
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Figure 5. Blockade of migratory DCs does not impair immunity after s.c. or i.d. protein immunization. (A) Representative gating of inguinal LN
taken from CCR7~/~ and Flt3L-treated and untreated vaccine mice. (B) CCR7~/~ mice versus B6 controls were immunized with 5 or 0.5 ug of «CD205
gag-p24 in separate experiments (n = 3 mice per group). Error bars show mean + SEM. *, P < 0.05; *, P < 0.01; ** P <0.001. Red, FIt3L treated; blue, PBS
treated. Intracellular cytokine staining for spleen, LN, and lung parenchyma and CFSE dilution of splenocytes after 4 d in culture with p24. (C) i.d. immuni-
zation with 0.5 ug aCD205 gag-p24: proximal draining LN and spleen intracellular cytokine staining and CFSE dilution of splenocytes after 4 d in culture
with p24. Pooled from 3 independent experiments of n = 5 mice per group. Error bars show mean + SEM. *, P < 0.05; **, P < 0.01; ** P < 0.001). (D) CD8*
CFSE divided IFN-y T cells after DEC-OVA SQ immunization. Pooled from 2 experiments, n = 4-5 mice per group. Error bars show mean + SEM. *, P < 0.05;
* P<0.01; " P<0.001. (E) Mixed bone marrow chimera after SQ immunization with 0.5 ug «CD205 gag-p24 in the presence or absence of DT, CFSE
dilution shown. Pooled from 2 independent experiments with n = 4-5 mice per group for CCR7+*ZDTR chimeras compared plus and minus DT; n =1
experiment for 5 mice per group for CCR7+CD45.1 plus and minus DT controls. Error bars show mean + SEM. *, P < 0.05; ™, P < 0.01; ™, P < 0.001.

Z-DTR does not delete monophagocytic lineages or PDCs
and immunity was lost in Z-DTR mice, suggesting these sub-
sets are not requisite. To confirm that CD11b"s" monocytes,

in L-DTR chimeras produces heightened ex vivo CD4" im-
mune responses when compared with CD45.1—CD45.2
control chimeras.
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monocyte-derived DCs, and macrophages were not required
for immunization, we examined the CD11b-DTR mouse ver-
sus wild-type. We observed no significant difference in prim-
ing between groups after DT administration, further excluding
the contribution of these cells (Fig. 6, D—F) and controlling
for the effects of DT administration. These data suggest
Zbtb46- and Flt3L-dependent cDCs mediate aCD205gag-
p24 priming.

migDCs closely cluster and share expression of immune-
dampening genes, and pathways, across species

We were intrigued by the surprising yet consistent observation
that deletion of one or multiple subsets of Langerin* migratory
DCs seemed to enhance immunity. Also, collective blockade
of skin DC migration enhanced the immune response to prim-
ing in vivo; this appeared to occur irrespective of the presence
of Flt3L, suggesting migratory DCs might be acting in concert
to suppress immunity. We observed close principal component
analysis clustering of migDCs to each other when compared
with cross-presenting cDCs, monocytes or monocyte-derived

Article

DCs, or macrophages (Fig. 7 A). We observed similar clustering
of skin-resident DCs in humans when compared with their
developmental counter parts in blood (Fig. 7 B).To further in-
vestigate this, we sorted three subsets of migDCs and CD8a*
cDCs from the skin-draining LNs from Flt3L-treated mice,
seeking transcripts commonly expressed across three migDCs
subsets at twofold differential expression when compared with
LN-resident CD8a™ DCs. We identified common up-regulation
of genes associated with immune suppression across all skin
DC subsets when compared with lymphoid-resident cross-
presenting DCs mouse (Fig. 7 C).To determine if this occurs
in people, we also analyzed transcripts from three subsets of
human migDCs isolated from skin versus blood BDCA3*
cross-presenting DCs that were available in the NCBI Gene
Expression Omnibus (GEO; see Materials and methods; Haniffa
et al., 2012). We observed overlap in the genes expressed in
the skin-resident or skin-migrated DCs across both species
(Fig. 7 C). We performed our study in Flt3L-treated mice.
Prior work has demonstrated immune dampening genes in a
murine CD103" migratory lung DC subset when compared

LN
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p24

(A-C) CD45.2 mice were irradiated and reconsti-
tuted with bone marrow as indicated. Chimeras
received DT on day —3 and —1 to prime and
boost immunization with 0.5 ug «CD205 gag-
p24. Intracellular cytokine staining immediately
ex vivo for (A) Spleen and (B) LN. Black shows
staining for p17 peptide control (plus DT) versus
red or blue (plus DT) p24 peptide challenge.
(C) CFSE dilution of splenocytes after 4 d in cul-
ture. (A-C) Pooled from 4-5 independent experi-
ments (n = 3-5 mice per group, based on survival
after DT administration). No DT controls (blue)
performed once across all 4 groups (n = 4-5 mice
per group). Error bars show mean + SEM. ", P < 0.1;
* P <0.05;*, P<0.01;** P<0.001). (D-F)
CD11b DTR versus B6 control mice were admin-
istered DT on day —3 and —1 to prime-boost
immunization with 0.5 pg «CD205 gag-p24.
CFSE dilution of splenocytes after 4 d in culture
(D) and intracellular cytokine stainings (E-F).
Black shows staining for p17 peptide control
(plus DT), red or blue (plus DT) show p24 chal-
lenge in wild-type and controls. One representa-

o7 p2a pi7 tive experiment of n = 4-5 mice per group. Error

CD11b DTR WT

bars show mean + SEM. *, P < 0.05;

+DT * P<0.01;™ P<0.001.
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Figure 7. Migratory DC subsets cluster together and share higher expression of immune dampening genes and down-regulation of genes
associated with DC activation when compared with cross-presenting DCs in mouse and human. (A) PCA on twofold change (relative to LN CD8a*
cDCs) or greater in the top 15% of all genes (n = 1,290) genes for 3 individual migratory DC, versus LPS-treated CD205* ¢cDCs, DC-SIGN* monocyte-
derived DCs, and macrophages (mouse); n = 3 or 4 independent sorting experiments and sample replicates. (B) PCA on twofold change (relative to
BDCA3+ or BDCA1* blood DCs) or greater in the top 15% of all genes (n = 920) for human skin-resident versus blood DC and monocyte subsets. (C) Genes
shared across all three migDCs subsets with twofold or greater difference compared with CD8« ¢DCs (mouse) or blood BDCA3* DC humans: (left) mouse
and (right) human skin DC subsets. * denotes the fold difference was under the threshold cut off of twofold in at least one of three migDC subsets.

(D) Cross-species IPA. 227 genes commonly up-regulated by twofold or greater across all 3 migratory skin DC subsets compared with classical cross-
presenting DCs in both mouse and human. Red represents up-regulated pathways; green represents down-regulated pathways.
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with CD8a*t lung LN DCs (Miller et al., 2012). For additional
validation, we compared our dataset (Illumina) to additional
datasets from skin DC subsets and LN CD8a* ¢DCs available
in the GEO (see Materials and methods), which were per-
formed by an independent consortium on a different array
platform (Affymetrix) and in the absence of FIt3L treatment
(Fig. S3).We observed the same trend, which was unaltered by
FIt3L treatment. Murine transcripts included SOCS2, PIAS3,
PD-L1,ITGBS, and Spred1, CD63, IL4i1, IL15Ra, Tmem176A,
and Tmem176B. ITGB8 induces the immunosuppressive
cytokine TGFB (Travis et al., 2007). Knockdown of the
tetraspanin CD63 in APC enhances T cell function (Petersen
et al., 2011). Tmem176A and 176B binding partners inhibit
DC maturation (Louvet et al., 2005; Condamine et al., 2010).
The immature state of DCs is associated with silencing of an-
tigen specific T cell responses, induction of T regulatory cells,
and tolerance to self (Steinman et al., 2003; Ohnmacht et al.,
2009). CCLS5 is involved in DC migration (Sallusto et al.,2000),
dampens airway hyperresponsiveness, and is essential for sup-
pressor functions of T reg cells (Chang et al., 2012). MigDCs
also commonly shared reduced expression of gene products
and pathways associated with DC activation, function, and
regulation, including Clec9A, XCR 1,and CD36. Diminished
expression of Clec9A may prevent T cell activation (Zhang et al.,
2012).The lymphotactin receptor XCR1 is found on CD8a*
cross-presenting DCs. The XCL1-XCR 1 axis controls CD8*
T cell cytotoxicity against antigen (Dorner et al., 2009).
CD36 down-regulation may alter DC maturation as binding
of erythrocytes infected with malaria to DCs via CD36 sig-
nificantly inhibits DC maturation (Urban et al., 1999), and
antibodies against CD36 modulate DC function (Urban et al.,
2001) resulting in failure to prime T cells.

To hone in on commonly regulated pathways across spe-
cies, we performed Ingenuity Pathway Analysis (IPA) of genes
shared in the migratory DCs of mouse and humans (Fig. 7 D).
SOCS2, IL-15, and PD-L1 and FAS pathways were observed
as central to differential migDC gene expression (Fig. 7 D).
SOCS2 may act on DCs directly to block activation through
STAT3 and NF-kB signaling (Posselt et al., 2011). In human
DCs, SOCS2 acts as a negative regulator of DC activity that is
normally expressed after TLR-induced DC activation to
counter-regulate DCs (Posselt et al., 2011). IL4i1 has a role in
antigen processing and presentation (Boulland et al., 2007) and
inhibits T cell proliferation (Lasoudris et al., 2011). PD-L1 di-
rectly inhibits T cell function (Butte et al., 2007; Zhang et al.,
2012). Convergence on IL-15 signaling may suggest skin DC—
mediated control of NK cell function (Castillo et al., 2009).

DISCUSSION

s.c. immunization is one of the most potent and common
forms of immunization. Nevertheless, it remains incompletely
understood in vivo, limiting the design and development of
clinical agents to enhance immunity. To elucidate the role of
different DC subsets in immune priming, we simultaneously
examined development, antigen capture, gene expression
profiling, and functional analysis of different DC subsets. We
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identified Flt3, ZBT46-dependent classical DCs as central to
T cell priming to HIV gag-p24. Strikingly, despite enhanced
antigen capture and Flt3L dependence, migDCs, including
Langerin*CD103* DCs, dampen the immune response in vivo
and share common gene signatures related to blockade of DC
and T cell activation. Our data reveal Flt3 signaling is central
to productive immunity via classical DCs and suggest FIt3L
may have therapeutic potential when coupled to DC-targeted
and soluble protein vaccines, as FIt3L enhanced immunity in
multiple settings.

During immunization, changes in the distribution and com-
position of DCs occur. LN-resident and migDCs redistrib-
ute their numbers in the skin-draining LN, a change largely
accounted for by an increase in the population of Langerin™
dermal DCs (Kastenmiiller et al., 2011). Although tightly reg-
ulated in the steady state (Shadle et al., 1989; Langley et al.,
1993), we detect FIt3L immediately after s.c. delivery of pro-
tein immunization and note Flt3L administration alters the
composition of cDCs and migDCs in the skin-draining LNs.
Flt3 receptor signaling is also necessary for productive immu-
nity. Our data therefore suggest FlIt3—FIt3L interactions are likely
central to changes in the composition of the LN DC com-
partment after immunization and requisite for immunity. As
previously observed in spleen (Bozzacco et al., 2010; Sathe
et al., 2011), we note that Flt3L expands PDCs and ¢DCs in
skin-draining LN, with bias to CD8a CD205" cross-presenting
cDCs (Fig. 3, A and B). FIt3L bias to LN-resident cross-
presenting DCs and improved antigen capture by DCs are
mechanisms that may support enhanced protein immuniza-
tion. Indeed, newly formed CD24" Flt3L-dependent precur-
sors to CD8a* spleen DCs induce stronger viral recall than
CD8a* DCs (Bedoui et al., 2009b). cDCs from Flt3L-treated
mice demonstrate a higher percentage of in vitro antigen cap-
ture due to a higher fraction of CD8* CD205" DCs being
represented (Fig. 3, B and C). This does not exclude the pos-
sibility FIt3L could alter lymphatic antigen delivery, but sug-
gests differences in composition may be responsible for the
observed effect in vivo.

Robust mucosal immunity is of particular importance to
preventing the pathogenesis of certain lentiviral infections, such
as HIV. Preferential depletion of CD4" T cells has been noted
in the intestinal lamina propria during acute HIV infection
(Brenchley and Douek, 2008). FIt3L enhances both CD4* and
CD8* mucosal immunity in peripheral sites, including lung
parenchyma, small intestinal lamina propria, and skin (unpublished
data). Enhanced immunity was versatile and occurred with
different antigens, microbial mimics, soluble and DC-targeted
protein immunization, and increased serum IgG, lymphoid, and
mucosal T cell responses. Coupling FIt3L to both soluble and
DC-targeted protein vaccines with appropriate adjuvant for
cross-presenting cDCs will likely be of clinical benefit.

Given a requirement for FLK and Zbtb46 with exclusion
of migDCs, pDCs, monocytes, and macrophages, we demon-
strate that FIt3L- ZBTB46-dependent cDCs are central to s.c.
priming. T cell priming via LN-resident CD24* CD8a DCs
is consistent with our observation that FIt3L improved
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immunization with either TLR 3/MDAS5 (polyIC[LC])
and TLR 4 (GLA-SE) microbial mimics as adjuvant. FIt3L-
dependent CD24" DCs from the spleen and BM cultures ex-
press higher transcripts for TLR3 and some TLR4, whereas
the CD11b" subset expresses predominantly TLR4 and no
TLR3 (Naik et al., 2005). The requirement for ¢cDCs and
not migDCs is not likely caused by TLR restriction because
CD103* dermal DCs express higher levels of TLR3 (Jelinek
et al., 2011) but are dispensable for immunization with
polyIC(LC). Finally, our observations in CCR7~/~ mice, also
may suggest monocyte-derived DCs are not required in the
LN during priming because they require CCR7 for LN entry
(Cheong et al., 2010). Although GLA-SE is a microbial mimic
of LPS, and LPS induces monocyte-derived DCs, we observe
that GLA-SE may act as adjuvant independently of monocyte-
derived DCs in the skin-draining LNs. This was further
validated using CD11b DTR mice in which deletion of
monocytes and monocyte-derived DCs, but not CD8a™
CD205* ¢cDCs, occurs (Choi et al., 2011), which did not im-
pair CD4* IFN-vy responses.

Our data support a functional and genetically programmed
role for migDCs in dampening immunity. Current vaccine
design efforts are centered on targeting antigen to skin DCs
and may inadvertently trigger a program of immune suppres-
sion. At high and limiting dose «CD205-gag p24, we do not
observe a requirement Langerin® DCs in s.c. immunization.
Rather we observe enhanced T and B cell immunity. En-
hanced immunity to s.c. and i.d. antigen are observed in the
complete absence of skin DC migration to the draining LNG.
Consistent with a role in dampening immunity in vivo, three
individual skin DC subsets share common expression of genes
associated with tolerance when compared with lymphoid and
blood cross-presenting DCs. These included common pro-
grams shared across species that block DC migration and
activation, and those involved in direct inhibition of T cell
activation, such as PD-L1.Thus, the immune response likely
results from a complex interplay of tolerizing and immuniz-
ing DC activity in LNs. The cues that dictate when migDCs
are poised to induce tolerance versus immunity to self and
nonself-antigens remain to be further investigated. These cues
may be conferred by the cutaneous or peripheral microenvi-
ronment and likely extend beyond hematopoietic lineage
specification. Our study suggests Langerin*CD103* DCs
from tissue directly oppose the activity CD8a ¢DCs in LNs
in vivo despite common origin, shared developmental path-
ways, and irrespective of developmental potentiation with
FIt3L. Indeed, we find migDCs from both Flt3L-treated
and untreated mice share elevated expression of immune-
dampening gene signatures and pathways (Fig. 7 and Fig. S3).

In contrast to a deterministic model in which distinct
populations of DCs are developmentally programmed, the
role of different DC subsets in priming and tolerance could
relate to their spatial and temporal distribution in the LN, tis-
sue residence, and antigen access. cDCs lie close to the LN
reticular system, or conduits, where they rapidly uptake and
present soluble antigen from lymph (Sixt et al., 2005). migDC
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subsets carry high concentrations of processed antigens to the
LN inner and outer paracortex near HEVs (Bajénoff et al.,
2003; Kissenpfennig et al., 2005) and arrive in the LN later
after immunization (Itano et al., 2003). That we observe en-
hanced antigen capture by migDCs in LNs is consistent with
prior observations of soluble antigen pE-I-Ab complexes
detected on skin-derived DCs already present in the LNs as
early as 30 min after s.c. antigen injection (Itano et al., 2003).
Based on the early kinetics of peptide complex detection,
migDCs in LN were thought to initiate T cell priming. How-
ever, when the injection site is removed 5 h after s.c. priming,
preventing the arrival of additional migDCs from periphery
to LN, clonal proliferation is not impaired, suggesting redun-
dancy of migDCs that acquired antigens in the periphery and
traffic into the LN. However, injection site removal studies
cannot exclude the contribution of preexisting LN-resident
migDCs (Itano et al., 2003). Rather, when we tested CCR77/~
mice where migDCs are entirely absent from the LN at the
time of priming, we observe enhanced not diminished in vivo
immune priming supporting a role for migDCs at the LN in
dampening immunity and further supported by their com-
mon transcriptomics program.

Previous studies addressing DC subset contributions have
largely examined the CD4" T cells response to s.c. OVA im-
munization (Allenspach et al., 2008). In this system, immune
responses depended on radio-resistant skin DCs (i.e., mainly
LCs) in the draining LNs. Differences in our observations
from such work may result from several notable differences in
the model systems used, including the antigen (HIV gag-p24
vs. OVA), the adjuvant (microbial mimic vs. complete or in-
complete freund’s adjuvant), deliver strategy (DC-targeted vs.
nontargeted), differences in the naive polyclonal repertoire
in our study versus intravenous adoptive transfer of a single-
affinity clone (OT-II), and the model system used to test the
contribution of migDCs (restricted migration and complete
absence in the LN in CCR77/~ or DTR depletion [our
study] versus normal migration capacity of migDCs but with
impaired MHCII presentation [Allenspach et al., 2008]). Ad-
ditional work using OT-II T cell transfer and immunization
with chemically coupled aCD205-OVA in the CCR77/~
versus control mice observed a diminished T cell response in
CCR77/~ mice (Ohl et al., 2004). Therefore, the difference
we observe compared with previous studies with OVA and
OT-II is most likely related to the nature of the antigen and
uniform T cell repertoire in the setting of transgenic models
rather than antigen delivery (DC targeting), adjuvant, and the
model system used to distinguish migDCs from LN-resident
DCs. Indeed, in prior experiments when the concentration of
OVA was increased the requirement for migDCs was relieved
(Allenspach et al., 2008). Thus, dependence for the migDCs
in the OVA transgenic system may relate to specifics of that
system, such as affinity of the clone, low-dose antigen, the
number of peptide MHCII complexes, the distribution of in-
travenously transferred transgenic T cells, and competition of
naive transgenic cells for antigen. Consistently, migDCs failed
to induce delayed proliferation of OT-II cells in the absence
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of lymphoid-resident DC antigen presentation (Allenspach
et al.,2008), supporting our observation LN-resident DCs are
required to initiate immunity and that lymphoid-resident
DCs selectively trap antigen-specific lymphocytes in the
draining LN (Itano et al., 2003). Our initial observation that
migratory DCs dampen the immune response to high- and
low-dose antigen was validated with four selective DC abla-
tion models and transcriptome analyses.

Lastly, we note that CCR7 is dispensable on both T cells and
DC:s for productive immunity. Though migDCs are entirely
CCR7-dependent, naive T cell entry into LN is partially de-
pendent on CCR7 and reduced to 30-50% of wild-type levels
in peripheral LNs (Forster et al., 1999).T cells can be classified
as naive central memory (T¢y) CD45RA™ CCR7Y, effector
memory (Tgy) CD45RA™ CCR7™ or terminally differentiated
effector cells (Tpypa) CD45RAT CCR7 (Sallusto et al., 1999;
Sallusto and Lanzavecchia, 2009; Pepper et al., 2010). That
CCRY7 dependence was not observed on T cells may relate to
the observation in vaccinia virus and yellow fever vaccines that
memory T cells within 2 wk of priming are predominantly
CCR7™ and exhibit strong proliferation in vitro, suggesting a
lack of terminal differentiation (Ahmed and Akondy, 2011).

Advances in immunotherapy to block immunosuppres-
sion include CTLA-4 and PD-L1 blockade, and dramatically
expand the therapeutic window for immune priming. Protein
immunization offers a safe and eflicacious strategy. We dem-
onstrate the Flt3 pathway is central to protein immunization
and can be exploited to potentiate immunity via cDCs. Our
data further reveal that a robust T' cell and humoral immunity
to protein immunization with clinically relevant vaccines, and
with a polyclonal T cell repertoire, is centered on ZBTB46-
and Flt3L-dependent cDCs. We establish skin-derived migDCs,
including Langerin® 103* DCs, are not required at the LN
for s.c. protein vaccination immunization. Instead these popu-
lations collectively and individually dampen immunity and
share common expression of genes associated with immune
inhibition. Though Langerin*CD103* DCs of the skin share
developmental origin with CD8a ¢DCs in lymphoid tissue,
they may be conditioned by tissue microenvironment to in-
hibit DC and T cell activation. This cannot be overcome by
enhancing their numbers, antigen capture, or developmental
conditioning. Thus, future immunization strategies for the
clinic will couple likely protein immunization and FIt3L treat-
ment to target antigen to, and simultaneously potentiate the
development of and antigen capture by, LN-resident ¢cDCs.

MATERIALS AND METHODS

Mice, chimerization, and deletion. C57BL/6 mice (B6) were purchased
from Taconic Labs or bred at The Rockefeller University. The Langerin-
DTR mouse was developed to distinguish between the functional attributes
of Langerin® and other DC subsets (Bennett et al., 2005). 0.5-1 pg DT
(Sigma-Aldrich) was administered per average 25-30 g mouse as described
for all DTR-based transgenic strains used, including the CD11b and CD11¢
DTR (Zaft et al., 2005) that were purchased from The Jackson Laboratory.
CCR77/ mice were bred at The Rockefeller University after purchase from
The Jackson Laboratory and are described with respect to defects in the skin-
derived DC migration (Martin-Fontecha et al., 2003, 2008). Langerin-GFP
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mice were generously provided by B. Malissen, bred as homozygotes at The
Rockefeller University, and have been previously described (Kissenpfennig
et al., 2005). BM chimeras used 8-9-wk-old irradiated recipients (500 cGy
plus 550 cGy) with 3 h between irradiations; cell suspensions of BM were
injected intravenously immediately after (3 X 10° BM cells transferred per
recipient). Mice were maintained after radiation on antibiotic supplemented
food (TestDiet) for 12 wk before use. All mice were housed in specific patho-
gen—free conditions. Protocols were approved by the Rockefeller University
Animal Care and Use Committee.

Tissue harvest and cell preparation of DC. 6—8-wk-old C57BL/6 F or
Langerin-GFP mice were injected s.c. to the flank with endotoxin-free
(<0.0064 EU/mg), GMP grade, recombinant human Flt3L (Celldex) at
10 pg/mouse/day diluted in sterile PBS for 10-14 d. For sorting skin DC sub-
sets, Flt3L-treated Langerin GFP mice were used to obtain sufficient num-
bers of migratory DCs from the skin-draining LNs. Skin-draining LN and
spleen was isolated from individual mice, teased or ballooned, and incubated
for 25 min at 37°C in Collagenase D (400 U/ml, Roche) in Hanks’ Balanced
Salt Buffer (Invitrogen). After incubation, 0.5 M EDTA was added to a final
concentration of 10 mM EDTA for disruption of DC-T cell complexes and
the sample was incubated for an additional 5 min at 37°C. For spleen cell
preparation, ACK lysis of red cells was performed. Undigested fibrous mate-
rial was filtered through a 70-um cell strainer. Subsequent washed were per-
formed with ice-cold PBS with 2% FCS. For crawl-out assay, individual ears
were harvested, washed in 70% EtOH and split dermal side down into com-
plete-RPMI media. At 72 h, cell suspensions were isolated and filtered. The
pellet was washed twice and incubated in Fc block with 2% rat serum before
cell surface marker antibody staining.

After size, live/dead, and exclusion criteria (CD3, CD19, NK1.1 exclu-
sion), DC subsets were sorted as described (Fig. 3 and Fig. S2). RNA was pre-
pared by standard methods using TRIzol (Invitrogen) and further purified
using RNeasy MinElute clean up (QIAGEN). Purity analysis was done by
nanodrop and Eukaryote Total RNA Pico Series I (Agilent). RINA was ampli-
fied and hybridized on the Illumina MouseRef-8 v2.0 Expression BeadChip.

Vaccination protocol. Age, gender-matched control, and experimental mice
were injected daily during both the prime and boost phase by 1.p. injection
with FIt3L, as above, in sterile PBS, or by PBS alone (control) for 10 d. At day 8,
aCD205-gag p24 or aCD205-OVA was injected s.c. into the footpad or by
the i.p. route, as indicated with 20 pg of GLA-SE (Immune Design) or 25 pg
of polyIC stabilized with poly-L-lysine (poly IC[LC]; Longhi et al., 2009).
Boost vaccination was administered exactly 4 wk later. For s.c. priming
to aCD205-gag p24, mice in all groups were sacrificed 7 d after immuniza-
tion. For s.c. priming to aCD205-OVA, mice were sacrificed at day 11after
boost for IP priming at 21 d. In mice vaccinated to aCD205-gag p24, peptide
challenge with p24 pools or p17 (control) pools at 1 pg/ml for intracellular
cytokine staining with 2 pg/ml anti-CD28 antibody was added, and at
0.05 pg/ml for CFSE 4 d cultures. For mice vaccinated to aCD205-OVA,
OT-I and OT-II peptides were pooled versus p24 (control) at 1 pg/ml for ICS
with 2 pg/ml anti-CD28 antibody, and for CFSE cultures at 0.05 pg/ml.

T cell isolation for proliferation assay or intracellular cytokine stain
(spleen, lungs, and LN). Individual vaccinated mice were sacrificed, and
serum collected by cardiac bleed with separation of serum from heme by
centrifugation at 13,000 rpm in BD microtainer serum separator tubes (ref.
365956) in a table-top rotor (Eppendorf 5417R) at 4°C. Intracardiac perfu-
sion was performed with PBS into the right ventricle to balloon the lungs
and flush leukocytes and RBCs from the pulmonary circulation. Individual
lung lobes were dissected, taking care to avoid the mediastinal LN, ballooned
with Collagenase D, and then further dissociated with pressure using the end
of a 5-ml syringe, followed by incubation at 37°C for 20 min. 10 mM EDTA
was added for the last 5 min of incubation. ACK lysis was performed as above.
Spleens and LN were harvested in RPMI complete media with 5% FCS,
mashed between 2 sterile glass slides, washed with RPMI complete media,
and then filtered through a 70-pM filter. Spleen samples but not LNs went
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through subsequent ACK lysis as described, and were washed twice and
counted. As described by Trumptheller et al. (2008) 500K splenocytes were
incubated for 6 h at 37°C with p24 pooled peptides or p17 pooled peptides
at a final concentration of 1 pg/ml with 2 pg/ml anti-CD28 antibody (clone
37.51; American Type Culture Collection). After 1-h incubation, Brefeldin A
was added to a final concentration of 10 pg/ml for the remaining 5 h to allow
intracellular cytokine accumulation. For all subsequent steps, cells were
washed and stained in ice-cold PBS with 2% FCS. For proliferation assays,
splenocytes were labeled with 1 uM/ml CFSE (Sigma-Aldrich) and plated
with 0.05 pg/ml p24 or p17 peptide pool. At 72 h, supernatants were har-
vested for cytokine ELISA. At 96 h, cells were isolated, washed, and intra-
cellular cytokine staining was performed as previously described.

Serum gag-specific IgG and Flt3L ELISA. Serum was prepared by car-
diac bleed, followed by serum separation using microtainer tubes (365956
BD). Serum gag-specific ELISA was performed by coating NUNC plates
(Apogent 80040 LE 0903) with 2 pg/ml of gag p24 recombinant protein in
PBS or ELISA coating bufter overnight at 4°C. Plates were washed 3—5 times
with PBS and blocked with Blocking solution (1X PBS, 5% goat serum, and
0.1% Tween-20) for 1 h at 37°C, followed by sample addition at serial 10-fold
titration (dilutions made into blocking solution) for 2 h at 25°C, followed by
3-5 subsequent washes. A 1:10,000 dilution of goat anti-mouse IgG HRP
(Jackson ImmunoResearch Laboratories; 115-035-071) was added according
to standard protocols for 1 h at 37°C, the plate was washed 3—5 times before
addition of 100 ul 1X TMB Substrate Solution (eBioscience; 00-4201-56),
stopped with addition of 2N sulfuric acid, and read at 450/470 nm. Murine
Flt3L ELISA was performed on serum isolated from 35 individual mice
using the RD mFIt3L ELISA kit (E90038Mu).

Lamina propria isolation. To prepare single intestinal cell suspension, part
of small bowel including jejunum and ileum or a large bowel (cecum and
colon) were excised. Peyer’s patches were removed from the small intestinal
tissue. Intestinal lumen was exposed by a longitudinal incision and the tissue
was cut to a pasty consistency. Next, intestinal tissues were incubated in
RPMI with 1.3 mM EDTA (CellGro) on a 37°C shaker for 1 h. The super-
natants containing intestinal epithelial cell (IEC) with some superficial vil-
lous cells, were discarded. Tissue was washed thrice with RPMI to remove
EDTA. Tissue was digested with 0.2 mg/ml of type IV collagenase (Sigma-
Aldrich) at 37°C for 1 h.Tissue was then homogenized, filtered, and washed.
The resulting cell suspension was layered on a 44%/66% Percoll (GE Health-
care) gradient and the interface was collected to obtain an enriched mono-
nuclear cell population. Cell were washed and resuspended in complete
medium at a density of 2-5 X 10° cells/ml. Recall responses were examined
as described above.

Antibodies, live/dead dye, CFSE, FITC painting, and staining re-
agents. The following reagents were obtained from BD, eBioscience, or Bio-
Legend:anti-Langerin (eBioL31),anti-CD11¢ (N418),anti-IFN-y (XMG1.2),
anti-CD4 (RM4-5), anti-CD8a (53—6.7), anti-CD11b (M1/70), anti-
CD103 (2 E7), anti-Armenian Hamster IgG Isotype Control (eBio299Arm),
anti—rat [gG2a Isotype Control (eBR2a), anti-CD3 (500A2), anti-CD45 (30-
F11), anti-CD205 (NLDC-145), anti-EPCAM (G8.8), anti-CD24 (M1/69),
anti-F4/80 (BM8), anti-CD115 (AFS98), anti-PDCA1 (ebio927), anti-Ly6c
(HK1.4), anti-B220 (RA3-6B2), anti-I-A/I-E (M5/114.15.2), anti-CD3
(17A2), anti-CD19 (eBio1D3), and anti-NK1.1 (PK136). AQUA (L34957)
was from Invitrogen. Cytofix/Cytoperm kit was from BD. CFSE was ob-
tained from Sigma-Aldrich. Anti-CD205 (NLDC-145) was produced in the
Steinman laboratory and conjugated to Alexa Fluor 488 or 647. Other re-
agents included PBS and FBS (Invitrogen), ACK lysing buffer (BioSource).
Staining with Langerin and in some experiments for CD205 was performed
with cell surface and intracellular label. IFN-vy staining was performed after
cell surface label of T cell markers by intracellular cytokine staining using
Fix/Perm and Perm/Wash buffers (BD). Langerin staining was performed by
intracellular stain with anti-Langerin (L31) as previously described (Cheong
et al., 2007). For intracellular blocking, 2% rat serum was diluted into perm/
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wash buffer. All extracellular staining was performed in ice cold PBS with 2%
FCS. FITC painting was performed on the flank with 1:1 1% FITC in ace-
tone/dibutyl phthalate for 18-24 h before harvest.

Flow cytometry and gating. Cells were stained on ice in PBS with 2.0%
(vol/vol) FCS.LSR II (BD) was used for multiparameter flow cytometry of
stained cell suspensions, followed by analysis with FlowJo software (Tree
Star). For vaccine analysis T  cells from individual organs were gated by scatter,
singlets, exclusion of dead cells, CD3", CD4" versus CD8" IFN-y and in
proliferative assays by CFSE low, IFN-y* cells (Fig. S1, sample gating). For
LN DC subsets, sample gating is depicted (Fig. S2 A).

Microarray analysis, normalization and data analysis. Microarray data
is available macrophages, monocyte-derived LN DCs, LPS-treated classical
DCs in LNs, and LNs of Flt3L-treated mice from GEO under accession no.
GSE53588. Additional murine microarray files (Miller et al., 2012) were
downloaded from GEO under the accession no. GSE15907 (subset data from
accession nos. GSM538255-GSM538257 and GSM538268—-GSM538279).
A custom chip technology for Affymetrix Mouse Gene 1.0 ST was created to
import the raw data into GeneSpring NGS. Human microarray files (Haniffa
et al., 2012) were downloaded from NCBI Gene Expression Omnibus under
the accession no. GSE35459 (subset data from accession nos. GSM868894—
GSM868898, GSM868910-GSM868917, and GSM868922-GSM868925).
A custom chip technology for lllumina HumanHT-12V4.0 expression Bead-
Chip was created to import the raw data into GeneSpring NGS.

Raw files were preprocessed and normalized using GeneSpring GX Ver-
sion 12.5 RMA algorithm. Resultant data were pooled into groups by vari-
ous subtypes. The results of replicates were averaged. Normalized data were
filtered for gene encoding regulators with a coefficient of variation of less
than 0.5 in population replicates. Individual dermal migratory DCs in LNs
were compared against LN-resident CD8a* DCs, and differentially expressed
genes of twofolds or more were assessed by variance across the DC popula-
tions with the one-way (ANOVA), corrected for multiple hypotheses testing
with Benjamini and Hochberg FDR of <0.05.

Statistical analysis. For data reported in vaccine experiments, error bars
represent the standard error of the mean plotted between 35 individual ani-
mals per experiment per replicate. Statistical analysis for ICS and CFSE was
performed using the Mann-Whitney test between two groups was done
using Prism software (P > 0.05, not significant [ns|, *, P < 0.05; ** P < 0.01;
**% P <0.001). For serum Flt3L ELISA detection (Mann-Whitney test) and
DC expansion (unpaired Student’s f test), error bars represent the SD be-
tween three to five individual mice per group. For serum gag-p24 or OVA
IgG detection, error bars represent the mean + SEM and were analyzed using
an unpaired Student’s  test.

Online supplemental material. Fig. S1 shows the gating schema for in-
tracellular cytokine staining assays. Fig. S2 shows the gating of LN-resident
DC subsets. Fig. S3 depicts fold change in individual migratory skin DC
subsets from our Flt3L-treated mice on the Illumina platform, versus Imgen
consortium data on untreated mice on the Affymetrix platform. Online
supplemental material is available at http://wwwjem.org/cgi/content/full/
jem.20131397/DC1.
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