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    Introduction 
 Osteoclasts are multinucleated cells responsible for bone re-

sorption ( Martin et al., 1998 ;  Roodman, 1999 ;  Chambers, 2000 ). 

Hemopoietic cells of the monocyte/macrophage lineage dif-

ferentiate into osteoclasts under the strict control of bone-

forming osteoblasts ( Suda et al., 1999 ;  Takahashi et al., 2002 ). 

Osteoblasts express two cytokines essential for osteoclast dif-

ferentiation, macrophage colony-stimulating factor (M-CSF) 

and receptor activator of NF- � B (RANK) ligand (RANKL; 

 Suda et al., 1999 ;  Arron and Choi, 2000 ;  Hofbauer et al., 2000 ; 

 Takahashi et al., 2002 ;  Boyle et al., 2003 ). M-CSF is constitu-

tively produced by osteoblasts. Osteopetrotic op/op mice can-

not produce functionally active M-CSF as a result of an extra 

thymidine in the coding region of the M-CSF gene. Osteoclast for-

mation is severely suppressed in op/op mice ( Felix et al., 1990 ; 

 Wiktor-Jedrzejczak et al., 1990 ;  Yoshida et al., 1990 ;  Kodama 

et al., 1991 ). However, RANKL is inducibly expressed as a 

membrane-associated factor by osteoblasts in response to osteo-

tropic hormones such as parathyroid hormone (PTH) and 1 � ,25-

dihydroxyvitamin D 3  (1 � ,25(OH) 2 D 3 ;  Suda et al., 1999 ). 

RANKL-defi cient (RANKL  � / �  ) mice also exhibit severe osteo-

petrosis because of a lack of osteoclasts ( Kong et al., 1999 ; 

 Suda et al., 1999 ;  Arron and Choi, 2000 ;  Hofbauer et al., 2000 ; 

 Takahashi et al., 2002 ;  Boyle et al., 2003 ). Osteoclast precursors 

such as bone marrow – derived macrophages (BMM � ) express 

c-Fms (M-CSF receptors) and RANK (RANKL receptors), 

recognize RANKL expressed by osteoblasts through cell – cell 

interaction, and differentiate into osteoclasts in the presence 

of M-CSF. Although the mechanisms by which the monocyte/

macrophage lineage cells differentiate into osteoclasts are 

 O
steoclasts are multinucleated cells that resorb 

bone. Although osteoclasts originate from the 

monocyte/macrophage lineage, osteoclast pre-

cursors are not well characterized in vivo. The relation-

ship between proliferation and differentiation of osteoclast 

precursors is examined in this study using murine macro-

phage cultures treated with macrophage colony-stimulating 

factor (M-CSF) and receptor activator of NF- � B (RANK) 

ligand (RANKL). Cell cycle – arrested quiescent osteoclast 

precursors (QuOPs) were identifi ed as the committed 

osteoclast precursors in vitro. In vivo experiments show that 

QuOPs survive for several weeks and differentiate into 

 osteoclasts in response to M-CSF and RANKL. Adminis-

tration of 5-fl uorouracil to mice induces myelosuppres-

sion, but QuOPs survive and differentiate into osteoclasts 

in response to an active vitamin D 3  analogue given to 

those mice. Mononuclear cells expressing c-Fms and 

RANK but not Ki67 are detected along bone surfaces in 

the vicinity of osteoblasts in RANKL-defi cient mice. These 

results suggest that QuOPs preexist at the site of osteo-

clastogenesis and that osteoblasts are important for main-

tenance of QuOPs.

 Identifi cation of cell cycle – arrested quiescent 
osteoclast precursors in vivo 

  Toshihide   Mizoguchi ,  1    Akinori   Muto ,  1,4    Nobuyuki   Udagawa ,  2    Atsushi   Arai ,  1    Teruhito   Yamashita ,  1    Akihiro   Hosoya ,  3   

 Tadashi   Ninomiya ,  1    Hiroaki   Nakamura ,  3    Yohei   Yamamoto ,  1    Saya   Kinugawa ,  1    Midori   Nakamura ,  2    Yuko   Nakamichi ,  1   

 Yasuhiro   Kobayashi ,  1    Sakae   Nagasawa ,  1    Kimimitsu   Oda ,  5    Hirofumi   Tanaka ,  6    Mitsuo   Tagaya ,  6    Josef M.   Penninger ,  7   

 Michio   Ito ,  1   and  Naoyuki   Takahashi   1   

  1 Institute for Oral Science,  2 Department of Biochemistry, and  3 Department of Oral Histology, Matsumoto Dental University, Nagano 399-0781, Japan 
  4 Department of Periodontology, School of Dentistry, Aichi Gakuin University, Aichi 464-8651, Japan 
  5 Department of Biochemistry, School of Dentistry, Niigata University, Niigata 951-8514, Japan 
  6 School of Life Science, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan 
  7 Institute of Molecular Biotechnology of the Austrian Academy of Sciences, A-1030 Vienna, Austria    

© 2009 Mizoguchi et al. This article is distributed under the terms of an Attribution–
Noncommercial–Share Alike–No Mirror Sites license for the fi rst six months after the publica-
tion date (see http://www.jcb.org/misc/terms.shtml). After six months it is available under a 
Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, 
as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/184/4/541/1890458/jcb_200806139.pdf by guest on 11 February 2026



JCB • VOLUME 184 • NUMBER 4 • 2009 542

 In this study, we examined the relationship between pro-

liferation and differentiation of osteoclast precursors in murine 

BMM �  cultures and identifi ed cell cycle – arrested quiescent 

 osteoclast precursors (QuOPs) as the committed osteoclast pre-

cursors. In vivo experiments showed that QuOPs detected in 

bone had a long lifespan and promptly differentiated into osteo-

clasts in response to bone resorption-inducing stimuli. Like 

HSCs, QuOPs showed marked resistance to 5-FU treatment and 

preexisted along bone surfaces in the close vicinity of osteo-

blasts. Our results provide the fi rst description of cell cycle –

  arrested osteoclast precursors in vivo. 

 Results 
 Cell cycle arrest in osteoclast precursors 
is a prerequisite step for their 
differentiation into osteoclasts 
 BMM �  (osteoclast precursors) differentiated into TRAP +  multi-

nucleated osteoclasts within 3 d in the presence of M-CSF and 

RANKL ( Fig. 1 A ). The growth of BMM �  treated with RANKL 

and M-CSF was retarded on days 2 and 3 in comparison with 

that of M-CSF alone ( Fig. 1 A , left). The levels of cyclins D1, 

D2, D3, and E1 and Cdk2, 4, and 6 gradually decreased after 

treatment with M-CSF and RANKL ( Fig. 1 B ). On day 3, cul-

tures treated with M-CSF and RANKL still contained small 

amounts of cyclins D3 and E1 and Cdk2, 4, and 6. Using puri-

fi ed osteoclasts, we further examined whether mature osteo-

clasts express cyclins and Cdks. Purifi ed osteoclasts (purity of 

osteoclasts,  � 95%;  Akatsu et al., 1992 ) failed to express cyclins 

D1, D2, D3, and E1 and Cdk2 and 4 (Fig. S1, available at http://

www.jcb.org/cgi/content/full/jcb.200806139/DC1). Cdk6 was 

weakly expressed in purifi ed osteoclasts. The expression of Cdk 

inhibitors p27 KIP1  and p21 CIP1  was reported to be up-regulated 

during osteoclast differentiation ( Okahashi et al., 2001 ;  Sankar 

et al., 2004 ). BMM �  showed that the expression of p27 KIP1  

but not of p21 CIP1  was up-regulated in the presence of RANKL 

( Fig. 1 B ). Real-time PCR analysis confi rmed that the levels of 

p21 CIP1  and p27 KIP1  mRNA in osteoclast precursors refl ected the 

changes in p21 CIP1  and p27 KIP1  protein levels during their differ-

entiation into osteoclasts ( Fig. 1 C ). These results suggest that 

cell cycle arrest in mature osteoclasts is maintained by the dis-

appearance of cyclins and Cdks and that p27 KIP1  rather than 

p21 CIP1  is involved in RANKL-induced osteoclastic differentia-

tion of BMM � . 

 When hydroxyurea (HU), an inhibitor of DNA replica-

tion, was added to the culture on day 0, RANKL-induced osteo-

clast formation was completely inhibited ( Fig. 2 A ). In contrast, 

the formation of osteoclasts was accelerated by HU when it was 

added on day 1 ( Fig. 2 A ). HU added on day 2 had no effect on 

osteoclast formation. BrdU is a nucleoside analogue that can be 

incorporated into dividing nuclei. When BrdU was added to 

BMM �  cultures together with RANKL on day 0, all of the nu-

clei in RANKL-induced multinucleated cells were labeled with 

BrdU ( Fig. 2 B ). When BrdU was added on day 1 (1 d after 

treatment with RANKL), only 20% of the nuclei of multinucle-

ated cells incorporated BrdU ( Fig. 2 B ). Ki67 is a marker of ac-

tively cycling cells ( Gerdes et al., 1984 ). Most nuclei of BMM �  

well defi ned, the characteristics of the osteoclast precursors in 

vivo have remained unclear. 

 Using RANKL  � / �   mice and a system involving bone 

morphogenetic protein 2 (BMP-2) – induced ectopic bone for-

mation, we previously examined how the site of osteoclasto-

genesis is determined ( Yamamoto et al., 2006 ). Collagen disks 

containing BMP-2 (BMP-2 disks) or vehicle were implanted 

into RANKL  � / �   mice, which were i.p. injected with RANKL 

for 7 d. Tartrate-resistant acid phosphatase (TRAP; a marker 

enzyme of osteoclasts) – positive (TRAP + ) osteoclasts and alkaline 

phosphatase (ALP; a marker enzyme of osteoblasts) – positive 

(ALP + ) osteoblasts simultaneously appeared in the BMP-2 disks 

but not in the control disks. TRAP +  osteoclasts were located in 

close proximity to ALP +  osteoblasts. These results suggest that 

osteoblasts also play important roles in osteoclastogenesis by pro-

viding a suitable microenvironment for the action of RANKL. 

Recent studies have established that immunoreceptor tyrosine-

based activation motif – mediated signals act as a costimulatory 

signal in RANKL-induced osteoclastogenesis ( Kim et al., 2002 ; 

 Koga et al., 2004 ). Osteoblasts are proposed to express the 

putative ligand for immunoglobulin-like receptors, which in-

duces signals mediated by immunoreceptor tyrosine-based 

ac tivation motif – containing molecules. These results suggest 

that, besides M-CSF and RANKL, unknown osteoblast-derived 

factors and ligands for immunoglobulin-like receptors may be 

involved in the determination of the correct location of osteo-

clast formation. 

 Hematopoietic stem cells (HSCs) have self-renewal 

capacity and multilineage developmental potentials ( Wilson 

and Trumpp, 2006 ). A specifi c microenvironment in bone, 

called a stem cell niche, is proposed to sustain HSCs in an 

immature state so that their numbers can be maintained with-

out a loss of properties. HSCs that exist in the niche are shown 

to be resistant to treatment with 5-fl uorouracil (5-FU), which 

induces apoptosis in proliferating cells ( Heissig et al., 2002 ; 

 Arai et al., 2004 ). Recent studies have shown that HSCs are 

located in the trabecular endosteum area where osteoblasts 

play a critical role in maintaining quiescent HSCs ( Zhang 

et al., 2003 ;  Arai et al., 2004 ). It was also shown that PTH, 

through activation of the PTH/PTH-related peptide receptor 

in osteoblasts, could alter the HSC niche, resulting in the 

expansion of HSCs in vivo and in vitro ( Calvi et al., 2003 ). 

These results suggest that osteoblasts also play a role in the 

regulation of hematopoiesis. 

 Cell proliferation and differentiation are coordinated pro-

cesses in the development of specialized cells. Cell proliferation 

is driven by heterodimeric kinases composed of a cyclin, a regu-

latory subunit, and a Cdk, a catalytic subunit ( Morgan, 1995 ; 

 Sherr and Roberts, 1999 ). However, Cdk inhibitors such as the 

Cip/Kip family (p21 CIP1 , p27 KIP1 , and p57 KIP2 ) regulate the ac-

tivity of Cdks ( Sherr and Roberts, 1995 ,  1999 ;  Sherr, 1996 ; 

 Nakayama, 1998 ;  Pavletich, 1999 ). Both cell cycle progression 

and withdrawal are tightly controlled by these cell cycle regula-

tory molecules. Recent studies have shown that p27 KIP1 - and 

p21 CIP1 -induced cell cycle withdrawal in osteoclast precursors 

is important for their differentiation into osteoclasts ( Okahashi 

et al., 2001 ;  Sankar et al., 2004 ). 
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cycle regulatory molecules using a retroviral vector system. 

D-type cyclins are shown to associate with Cdk4 or 6 ( Weinberg, 

1995 ;  Morgan, 1997 ;  Classon and Harlow, 2002 ). Coexpression of 

cyclin D1 and Cdk4 in BMM �  suppressed osteoclast formation 

were stained with anti-Ki67 antibody. In contrast, all of the 

 nuclei in osteoclasts were negative for Ki67 (Ki67  �  ;  Fig. 2 C ). 

To confi rm that regulation of the cell cycle is a key determinant 

in osteoclast differentiation, BMM �  were transduced with cell 

 Figure 1.    Regulation of cell cycle during differentiation of BMM �  into osteoclasts.  (A) Time course of changes in cell growth and TRAP +  osteoclast for-
mation in BMM �  cultures. Bone marrow cells were cultured with 10 4  U/ml M-CSF for 4 d to prepare BMM � . BMM �  were further cultured with or without 
100 ng/ml RANKL in the presence of 10 4  U/ml M-CSF. After culturing for the indicated periods, cell growth was measured by the AlamarBlue assay (Invitrogen) 
and expressed as the increase in fl uorescence emission at 590 nm (excitation wavelength, 560 nm) relative to the control at day 0 (left). In the other culture 
treated with RANKL and M-CSF, cells were fi xed and stained for TRAP (right). TRAP +  multinucleated cells containing more than three nuclei were counted 
as osteoclasts (bars). Results are expressed as the mean  ±  SD for six cultures. *, P  <  0.01; signifi cantly different from the culture treated with M-CSF alone. 
(B) Expression of cell cycle regulatory molecules and osteoclast-specifi c molecules in BMM �  cultured with M-CSF or M-CSF plus RANKL. BMM �  were cultured 
with 10 4  U/ml M-CSF or 10 4  U/ml M-CSF plus RANKL (100 ng/ml). After the indicated periods, cell lysates were prepared and subjected to immunoblot 
analyses of the indicated cell cycle regulatory molecules. Cell lysates were also analyzed for osteoclast-specifi c markers such as carbonic anhydrase II and 
cathepsin K. (C) Real-time PCR analysis of expression of p21 CIP1  and p27 KIP1  mRNAs in BMM � . BMM �  were cultured with 10 4  U/ml M-CSF or10 4  U/ml 
M-CSF plus100 ng/ml RANKL. After the indicated periods, total RNA was extracted from cells. Expression levels of p21 CIP1  and p27 KIP1  mRNAs were esti-
mated by quantitative real-time RT-PCR. Dashed lines indicate control levels. Results are expressed as the relative expression of p21 CIP1  and p27 KIP1  mRNAs 
compared to the control at day 0. *, P  <  0.05. Error bars indicate mean  ±  SD for three experiments.   
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 Figure 2.    Relationship between cell cycle progression and arrest in BMM �  during differentiation into osteoclasts.  (A) Effect of HU on osteoclastic 
differentiation of BMM � . The experimental protocol is illustrated in the top left. BMM �  were cultured with 10 4  U/ml M-CSF and100 ng/ml RANKL. 
100  μ M HU was added to the culture on days 0, 1, or 2. After culturing for 3 d, cells were fi xed and stained for TRAP (right). TRAP +  multinucleated cells 
containing more than three nuclei were counted as osteoclasts (bottom left). *, P  <  0.01; signifi cantly different from the culture incubated without HU. 
(B) Nuclear labeling of osteoclasts with BrdU. BMM �  were cultured with10 4  U/ml M-CSF and100 ng/ml RANKL. 10 nM BrdU was added to the culture 
on days 0 and 1. After culturing for 3 d, cells were fi xed and stained with antibodies against BrdU (right). Arrows indicate BrdU +  nuclei in RANKL-
induced multinucleated cells in cultures treated with BrdU on day 1. BrdU +  and BrdU  �   nuclei in multinucleated cells containing more than three nuclei 
were counted. Percentages of nuclei labeled with BrdU were determined (left). *, P  <  0.01; signifi cantly different from the culture treated with BrdU on 
day 0. (C) Immunostaining of Ki67 in BMM �  and osteoclasts. BMM �  were cultured with 10 4  U/ml M-CSF and 100 ng/ml RANKL for 3 d to produce 
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tered i.p. into 3-wk-old RANKL  � / �   mice for 2 d (one injection/

day;  Fig. 4, A and B ). BrdU was also i.p. injected into RANKL  � / �   

mice (1 mg/injection/day) because toothless RANKL  � / �   mice 

were maintained with a water-containing paste diet. Osteo-

clasts were totally absent in tibiae of RANKL  � / �   mice ( Fig. 

4 A , top). The injection of RANKL into RANKL  � / �   mice gen-

erated many TRAP +  cells in tibiae ( Fig. 4 A , bottom). BrdU +  

nuclei were similarly observed in chondrocytes in growth 

plates in RANKL  � / �   mice injected with RANKL ( Fig. 4, A  

[middle] and  B  [left]). Although many multinucleated osteo-

clasts were generated by the injection,  > 70% of the nuclei in 

the osteoclasts did not incorporate BrdU ( Fig. 4, A and B , 

right). This suggests that RANKL induced the differentia-

tion of preexisting QuOPs in bone tissues into osteoclasts in 

RANKL  � / �   mice. 

 M-CSF is believed to be involved in the proliferation as 

well as differentiation of osteoclast progenitors in mice. There-

fore, we examined whether M-CSF – induced osteoclasts are 

formed from QuOPs in M-CSF – defi cient op/op mice. M-CSF 

(2  ×  10 6  U/injection) and BrdU (1 mg/injection) were injected 

i.p. into 3-wk-old op/op mice for 7 d (one injection/day;  Fig. 4, 

C and D ). Most of the nuclei of chondrocytes ( � 95%) in growth 

plates were labeled with BrdU in op/op mice with or without 

M-CSF treatment because of the long period (7 d) of BrdU ad-

ministration ( Fig. 4, C  [middle] and  D  [left]). Osteoclasts are 

hardly detected in 3-wk-old op/op mice ( Fig. 4 C , top). The in-

jection of M-CSF into op/op mice generated many TRAP +  cells 

in contact with bone surfaces of tibiae ( Fig. 4 C , bottom). Inter-

estingly, only 15% of nuclei in M-CSF – induced osteoclasts 

 incorporated BrdU in op/op mice ( Fig. 4, C  [right] and  D  [right]), 

suggesting that most osteoclasts were formed from QuOPs in 

response to M-CSF in op/op mice. These results also suggest 

that M-CSF as well as RANKL is not involved in the appear-

ance of QuOPs in mice. 

 We further examined whether the differentiation of QuOPs 

into osteoclasts is linked to the regulation of calcium metabo-

lism in wild-type mice. 7-wk-old mice were fed a low calcium 

diet for 3 d to induce osteoclastic bone resorption with the ad-

ministration of BrdU in drinking water. The number of osteo-

clasts in tibiae and serum activity of TRAP5b, a marker of 

osteoclastic bone resorption, were signifi cantly increased in the 

mice fed a low calcium diet (Fig. S3, available at http://www

.jcb.org/cgi/content/full/jcb.200806139/DC1). However, the per-

centage of BrdU +  nuclei in osteoclasts remained unchanged. 

These results suggest that osteoclasts produced by feeding on a 

low calcium diet are formed from QuOPs. 

 Identifi cation of QuOPs as 5-FU – insensitive 
cells 
 The aforementioned data suggest that, like hemopoietic stem 

cells, cell cycle – arrested QuOPs should be resistant to 5-FU 

that induces apoptosis of cells having high proliferative potential 

induced by RANKL and M-CSF, whereas the expression of 

p27 KIP1  stimulated it (Fig. S2, A and B, available at http://www

.jcb.org/cgi/content/full/jcb.200806139/DC1). These results sug-

gest that cell cycle progression and subsequent withdrawal in 

osteoclast precursors are required for their differentiation into 

osteoclasts in vitro. The committed osteoclast precursors were 

named cell cycle – arrested QuOPs. 

 RANK-mediated signals may switch on the cell cycle 

 arrest in osteoclast progenitors. To address this issue, primary 

osteoblasts were infected with a retrovirus carrying cDNA for 

RANK (Fig. S2 C). Neither down-regulation of cyclin D1 and 

Cdk4 expression nor up-regulation of p27 KIP1  expression was 

observed in RANK-transfected osteoblasts, even in the pres-

ence of RANKL. Osteoblasts expressing functional RANK 

proliferated similarly in the presence and absence of RANKL 

(Fig. S2 C). These results suggest that RANKL-induced cell 

cycle arrest is cell type specifi c. 

 BrdU labeling of osteoclasts in vivo 
 We next examined in vivo labeling of nuclei of osteoclasts 

with BrdU. BrdU in 1 mg/ml drinking water was adminis-

tered for 1 wk to mice at different developmental stages, and 

the incorporation of BrdU into the nuclei of osteoclasts was 

evaluated in tibiae ( Fig. 3 ). When pregnant mice at 13.5 d 

postcoitum (embryonic day 13.5 [E13.5]) were given BrdU 

in drinking water for 1 wk,  � 50% of the nuclei of osteoclasts 

in newborn mice were labeled with BrdU. Similarly, 3- and 

7-wk-old mice were given BrdU in drinking water for 1 wk. 

About 30% of the nuclei of osteoclasts were labeled with 

BrdU in 4-wk-old mice. In contrast, most nuclei of osteo-

clasts were BrdU negative (BrdU  �  ) in 8-wk-old mice. Thus, 

the BrdU labeling of osteoclasts was inversely correlated 

with the growth of mice ( Fig. 3 A ). We then examined the 

lifespan of QuOPs in adult mice. When 7-wk-old mice were 

given BrdU for an additional 7 wk, only 50% of the nuclei of 

osteoclasts were labeled with BrdU ( Fig. 3 B ). Most of the 

bone marrow cells around osteoclasts were BrdU positive 

(BrdU + ) in mice treated with BrdU for 7 wk. Previous studies 

have shown that the lifespan of osteoclasts is 2 – 4 wk in hu-

mans and mice ( Kodama et al., 1993 ;  Riggs and Parfi tt, 

2005 ). These results suggest that the lifespan of QuOPs is at 

least 4 wk longer. 

 Differentiation of QuOPs into osteoclasts 
in vivo 
 We next examined whether osteoclasts are formed from cell 

cycle – arrested QuOPs in response to several stimuli. Osteo-

clasts are totally absent in RANKL  � / �   mice. Injection of 

RANKL into RANKL  � / �   mice induces osteoclasts along 

bone surfaces ( Yamamoto et al., 2006 ). We fi rst examined 

whether RANKL-induced osteoclasts are formed from QuOPs 

in RANKL  � / �   mice. RANKL (15  μ g/injection) was adminis-

osteoclasts. (right) BMM �  and BMM �  treated with M-CSF and RANKL for 3 d were stained with anti-Ki67 antibody (red), and the nuclei were also 
labeled with DAPI (blue). (left) Percentages of Ki67-positive nuclei in BMM �  and RANKL-induced osteoclasts were determined. Results are expressed as 
the mean  ±  SD for three cultures. *, P  <  0.01; signifi cantly different from the BMM � .   
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5-FU (250 mg/kg body weight). The number of bone marrow 

cells was markedly decreased on day 6 after the injection 

( Fig. 5 A ). Mice pretreated with 5-FU for 6 d were i.p. given 

( Heissig et al., 2002 ;  Arai et al., 2004 ). We then examined 

the effects of 5-FU on the differentiation of QuOPs into osteo-

clasts in mice ( Fig. 5 ). 7-wk-old mice were injected i.v. with 

 Figure 3.    Incorporation of BrdU into nuclei of osteoclasts in vivo.  (A) BrdU incorporation into nuclei in osteoclasts at different growth stages of mice. 
Pregnant mice at E13.5 and 3- and 7-wk-old mice were given 1 mg/ml BrdU in drinking water for 1 wk. Newborn, 4- , and 8-wk-old mice administered 
with BrdU for 1 wk were killed, and tibiae were recovered. Sections of tibiae were prepared and double stained for TRAP (red) and BrdU (brown). Arrows 
indicate the BrdU +  nuclei in osteoclasts (right). BrdU +  and BrdU  �   nuclei in osteoclasts were counted, and percentages of BrdU +  nuclei in osteoclasts were 
determined (left). Changes in the body weight of mice are shown. (B) BrdU incorporation into nuclei in osteoclasts in adult mice. 7-wk-old mice were given 
1 mg/ml BrdU in drinking water for 7 wk. Tibiae were recovered and subjected to TRAP and BrdU staining. Arrows indicate BrdU +  nuclei in osteoclasts 
(right). Percentages of BrdU +  nuclei in osteoclasts were determined (left). Results are expressed as the mean  ±  SD for three animals.   
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BrdU +  nuclei in osteoclasts remained unchanged by the in-

jection ( Fig. 5 B ). Calcium concentrations and TRAP5b ac-

tivities in serum were signifi cantly increased in response to 

2MD in 5-FU – pretreated mice ( Fig. 5 C ). These results sug-

gest that 2MD-induced osteoclasts were formed from 5-FU –

 insensitive QuOPs. 

2MD (2-methylene-19-nor-1 � ,25(OH) 2 D 3 ; a potent analogue 

of 1 � ,25(OH) 2 D 3 ; 50 pmol/injection) for an additional 2 d 

with BrdU administered in drinking water. Expectedly, 2MD 

injected into 5-FU – pretreated mice signifi cantly increased 

the number of TRAP +  osteoclasts in tibiae even under myelo-

suppressive conditions in bone ( Fig. 5 B ). The percentage of 

 Figure 4.    Effects of RANKL and M-CSF on the incor-
poration of BrdU into nuclei of osteoclasts.  (A and B) 
Administration of RANKL to RANKL  � / �   mice. 3-wk-old 
RANKL  � / �   mice were i.p. injected with RANKL (15 
 μ g/injection/day) together with BrdU (1 mg/injec-
tion/day) for 2 d. The fi rst injection of BrdU was per-
formed 3 h before the fi rst injection of RANKL. 24 h 
after the fi nal injection, the tibiae were recovered. 
(A) Sections of tibiae were prepared and double stained 
for TRAP (red) and BrdU (brown). Portions of the 
epiphyseal growth plate (middle) and trabecular bone 
(right) were observed at a higher magnifi cation. (top) 
Osteoclasts were totally absent in RANKL  � / �   mice. 
(bottom) The administration of RANKL to RANKL  � / �   
mice induced osteoclasts to form in trabecular bones. 
(B, left) BrdU +  and BrdU  �   nuclei of chondrocytes in 
growth plates were counted, and percentages of 
BrdU +  nuclei in chondrocytes were calculated. (right) 
BrdU +  and BrdU  �   nuclei of RANKL-induced osteoclasts 
were counted, and percentages of BrdU +  nuclei in the 
osteoclasts were calculated. (C and D) Administration 
of M-CSF to op/op mice. 3-wk-old op/op mice were 
i.p. injected with M-CSF (2  ×  10 6  U/injection/day) to-
gether with BrdU (1 mg/injection/day) daily for 7 d. 
The fi rst injection of BrdU was performed 3 h before 
the fi rst injection of M-CSF. 24 h after the fi nal injec-
tion, the tibiae were removed from the mice. (C) Sec-
tions of tibiae were prepared and double stained for 
TRAP (red) and BrdU (brown). Portions of epiphyseal 
growth plate (middle) and trabecular bone (right) were 
observed at a higher magnifi cation. (top) Osteoclasts 
were totally absent in the tibiae of 3-wk-old op/op 
mice. (bottom) The administration of M-CSF to op/op 
mice induced osteoclasts to form in trabecular bones. 
(D, left) BrdU +  and BrdU  �   nuclei of chondrocytes in 
growth plates were counted and percentages of BrdU +  
nuclei in chondrocytes were calculated. (right) BrdU +  
and BrdU  �   nuclei of M-CSF – induced osteoclasts were 
counted, and percentages of BrdU +  nuclei in the os-
teoclasts were calculated. The results are expressed 
as the mean  ±  SD for three animals.   
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 Figure 5.    Effects of 5-FU administration on osteoclastic bone resorption induced by 2MD.  (A) Effects of 5-FU administration on hemopoietic cells in 
bone marrow. 7-wk-old mice were i.v. injected with 5-FU (250 mg/kg body weight). (left) On day 6 after injection, bone marrow cells obtained from 
the femora and tibiae were counted. Tibiae were also recovered from other 5-FU – treated and control mice. (right) Sections of tibiae were prepared and 
stained with hematoxylin-eosin. *, P  <  0.01; signifi cantly different from control mice. (B and C) Effects of 2MD administration on differentiation of QuOPs 
into osteoclasts. 7-wk-old mice were i.v. injected with 5-FU (250 mg/kg body weight). From day 6 after injection, mice were i.p. injected with 2MD (50 
pmol/injection/day) or vehicle for an additional 2 d with 1 mg/ml BrdU given in their drinking water. (B, right) The mice were killed, and blood and tibiae 
were recovered. Sections of tibiae were prepared and double stained for TRAP and BrdU. TRAP +  osteoclasts and BrdU +  and BrdU  �   nuclei in osteoclasts 
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(unpublished data). These results suggest that osteoblasts are 

involved in the maintenance of QuOPs in bone. 

 Discussion 
 In this study, we have demonstrated characteristics of cell cycle –

 arrested QuOPs as the committed osteoclast precursors in vivo. 

QuOPs had a quite long lifespan associated with resistance to 

5-FU treatment and promptly differentiated into osteoclasts with-

out cell cycle progression in response to all the experimental con-

ditions tested. Mononuclear cells expressing c-Fms and RANK 

but not Ki67 (possibly QuOPs) were also  detected along bone 

surfaces in the vicinity of osteoblasts in RANKL  � / �   mice. These 

results suggest that osteoblasts may play a role in maintaining 

QuOPs for a long period in an un differentiated state. 

 Identifi cation of QuOPs as osteoclast 
precursors 
 Cell cycle withdrawal of BMM �  during their differentiation 

into osteoclasts appeared to be associated with down-regulation 

of cyclins and Cdks and up-regulation of p27 KIP1 . Coexpression 

of cyclin D1 and Cdk4 in BMM �  suppressed osteoclast forma-

tion, whereas the expression of p27 KIP1  stimulated it. In addi-

tion,  Okahashi et al. (2001)  reported that RANKL up-regulated 

both p27 KIP1  and p21 CIP1  expression in osteoclast precursors. 

 Sankar et al. (2004)  showed that p27 KIP1  and p21 CIP1  double-

knockout mice developed osteopetrosis with fewer osteoclasts. 

Forced expression of functional RANK in osteoblasts failed 

to induce cell cycle withdrawal. These results suggest that cell 

cycle arrest induced by RANKL is essential for osteoclastic dif-

ferentiation and is peculiar to osteoclast precursors. 

 QuOPs are proposed to express both c-Fms and RANK. In 

fact, c-Fms + /RANK +  cells isolated from bone marrow differen-

tiated into osteoclasts even in the presence of HU. We further 

characterized the c-Fms + /RANK +  cells isolated from bone 

marrow of wild-type mice in more detail (Fig. S4, available 

at http://www.jcb.org/cgi/content/full/jcb.200806139/DC1). 

Immunohistochemical staining showed that most of the c-Fms + /

RANK +  cells were negative for F4/80 (Fig. S4 A). c-Fms + /

RANK +  cells were cultured with lipopolysaccharide (LPS) to-

gether with M-CSF for 3 d, and the appearance of macrophages 

was evaluated by F4/80 staining. The number of F4/80-positive 

cells was not increased, even in cultures treated with LPS 

(Fig. S4 A). Both F4/80 +  cells and RANK +  cells were detected 

in tibiae in wild-type mice, but cells double positive for RANK 

and F4/80 were rarely observed (Fig. S4 B). Phagocytic activity of 

c-Fms + /RANK +  cells were much lower than that of BMM �  

(Fig. S4 C). c-Fms + /RANK +  cells were further cultured with 

LPS together with M-CSF for 3 d. The number of bead-positive 

cells was slightly increased from the initial value, but most of 

the cells ( ≥ 80%) remained as nonphagocytic cells (Fig. S4 C). 

The ability of c-Fms + /RANK +  cells to differentiate into dendritic 

 Identifi cation of QuOPs as double-positive 
cells for c-Fms and RANK in bone 
 The aforementioned data suggest that QuOPs are resistant to 

5-FU and are present in bone. QuOPs as well as osteoclasts are 

expected to express both M-CSF receptors (c-Fms) and RANKL 

receptors (RANK;  Miyamoto et al., 2000 ). Next, we examined 

whether the administration of 5-FU alters the population of 

c-Fms + /RANK +  cells (c-Fms and RANK double-positive cells) 

in the bone marrow. 5-FU was i.v. injected into 7-wk-old mice. 

On day 8 after injection, bone marrow cells were collected and ana-

lyzed with a fl ow cytometer ( Fig. 6 ). MOMA-2 + /CD11b +  cells 

(monocytes/macrophages) decreased in number with the in-

jection ( Fig. 6 A , left). In contrast, 5-FU increased the Fms + /

RANK +  cell population in the bone marrow cells ( Fig. 6 A , 

right), suggesting that c-Fms + /RANK +  cells were cell cycle ar-

rested. We then examined whether MOMA-2 + /CD11b +  cells 

and c-Fms + /RANK +  cells can differentiate into osteoclasts with-

out proliferating. MOMA-2 + /CD11b +  cells differentiated into 

TRAP +  osteoclasts in response to M-CSF and RANKL in the 

absence but not presence of HU ( Fig. 6 B ). In contrast, c-Fms + /

RANK +  cells differentiated into TRAP +  cells even in the pres-

ence of HU ( Fig. 6 B ). 

 Finally, we tried to detect c-Fms + /RANK +  cells in bone tis-

sues in RANKL  � / �   mice because QuOPs but not osteoclasts are 

present in RANKL  � / �   mice ( Fig. 4, A and B ). Many mononuclear 

cells double positive for c-Fms and RANK (c-Fms + /RANK +  

cells;  Fig. 7 A , yellow) were detected along the surface of proximal 

tibiae in wild-type mice ( Fig. 7 A , left, arrows). Double-positive 

multinucleated cells were also observed in the same regions 

( Fig. 7 A , asterisk). These multinucleated cells appeared to be 

 osteoclasts. QuOPs were shown to be resistant to 5-FU treatment 

( Figs. 5 and 6 ). Coincidently, c-Fms + /RANK +  mononuclear cells 

were also detected even after treatment with 5-FU ( Fig. 7 A , bot-

tom left). c-Fms + /RANK +  mononuclear cells were detected along 

the surface of proximal tibiae in the RANKL  � / �   mice ( Fig. 7 A , 

right). Because most RANK +  cells expressed c-Fms in RANKL  � / �   

mice, we examined the expression of Ki67, a marker of actively 

cycling cells. Most of the RANK +  cells (94%) were negative for 

Ki67 in RANKL  � / �   mice ( Fig. 7 A , bottom right). 

 Osteoblasts may be involved in the maintenance of QuOPs 

in bone tissues. The distribution of ALP +  osteoblasts was com-

pared with that of RANK +  cells in RANKL  � / �   mice ( Fig. 7 B ). 

ALP +  cells were distributed along the bone surface in trabecular 

bone. Hypertrophic chondrocytes also expressed ALP ( Fig. 7 B , 

inset). The distribution of RANK +  cells was quite similar to that 

of ALP +  cells in the trabecular bone area. Higher magnifi cation 

of this area showed that RANK +  cells were always present in 

the vicinity of ALP +  osteoblasts. The distribution of osteoblasts 

and proliferating cells adjacent to osteoblasts was determined 

using another cell proliferation marker, proliferating cell nu-

clear antigen. Most of the cells adjacent to ALP +  cells were neg-

ative for proliferating cell nuclear antigen in RANKL  � / �   mice 

were counted. (left) Percentages of BrdU +  nuclei in osteoclasts were calculated. (C) Serum calcium concentrations and TRAP5b activities were determined 
in 5-FU – treated mice injected with and without 2MD. (B and C) *, P  <  0.05; signifi cantly different from the 5-FU – injected mice. Results are expressed as 
the mean  ±  SD for three animals.   
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additional 7 wk, only 50% of the nuclei of osteoclasts were 

labeled with BrdU. The lifespan of osteoclasts is reported to be 

2 – 4 wk in humans and mice ( Kodama et al., 1993 ;  Riggs and 

Parfi tt, 2005 ). These results suggest that the pool of QuOPs is 

much smaller in growing mice than adult mice and that the life-

span of QuOPs is quite longer than that of osteoclasts. In fact, 

most osteoclasts were formed from QuOPs in response to all the 

stimuli, such as the administration of RANKL in RANKL  � / �   

mice, the administration of M-CSF in op/op mice, the feeding 

of a low calcium diet in wild-type mice, and the administration 

of 2MD in 5-FU – pretreated mice. These results also suggest 

that neither M-CSF nor RANKL is involved in the proliferation 

of osteoclast progenitors and their differentiation into QuOPs 

in vivo. 

 Although M-CSF regulates growth and differentiation of 

monocyte/macrophage lineage cells in vivo, M-CSF – independent 

macrophages are shown to still be present in op/op mice ( Naito, 

1993 ;  Wiktor-Jedrzejczak and Gordon, 1996 ). QuOPs may be 

cells was much lower than that of BMM �  (Fig. S4 D). In con-

trast to BMM � , c-Fms + /RANK +  cells failed to proliferate in re-

sponse to M-CSF (unpublished data). These results suggest that 

c-Fms + /RANK +  cells isolated from bone marrow are committed 

precursors in an osteoclast lineage. 

 We previously reported that postmitotic osteoclast precur-

sors were formed in cocultures of osteoblasts and bone marrow 

cells ( Tanaka et al., 1993 ;  Takahashi et al., 1994 ). Postmitotic 

osteoclast precursors differentiated into osteoclasts even in the 

presence of HU, suggesting that the postmitotic osteoclast pre-

cursors are QuOPs. c-Fms + /RANK +  cells were also formed in 

the cocultures (unpublished data). These results suggest that 

osteoblasts may play a role in the differentiation of hematopoietic 

progenitors into QuOPs. 

 In vivo characterization of QuOPs 
 Percentages of BrdU +  nuclei in osteoclasts decreased with the 

growth of mice. When 7-wk-old mice were given BrdU for an 

 Figure 6.    Effects of 5-FU on changes in 
hemopoietic cell populations.  (A) Flow cytomet-
ric analysis of bone marrow cells. 7-wk-old 
mice were injected with vehicle (top) or 5-FU 
(250 mg/kg body weight; bottom). 8 d after 
the injection, mice were killed. Bone marrow 
cells prepared from tibiae were analyzed for 
the expression of MOMA-2 and CD11b (left) 
and c-Fms and RANK (right). The numbers in 
the top right corners indicate percentages of 
MOMA-2 + /CD11b +  cells or of c-Fms + /RANK +  
cells among all bone marrow cells. Results are 
expressed as the mean  ±  SD for three ani-
mals. (B) Effects of HU on osteoclast formation .  
MOMA-2 + /CD11b +  cells and c-Fms + /RANK +  
cells were isolated from bone marrow of wild-
type mice by magnetic cell sorting and cultured 
in the presence of 10 4  U/ml M-CSF and 100 
ng/ml RANKL. 70  μ M HU was added to some 
cultures. After 6 d of culture, cells were fi xed 
and stained for TRAP. TRAP +  multinucleated 
cells containing more than three nuclei were 
counted as osteoclasts. Results are expressed 
as the mean  ±  SD for six cultures. *, P  <  0.01; 
signifi cantly different from the culture incu-
bated without HU.   
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formed in cultures are somehow different from those of QuOPs 

in vivo. 

  Fischman and Hay (1962)  examined the origin of osteo-

clasts in regenerating salamander forelimbs. Osteoclasts fi rst 

appeared in the regenerating limb on day 8 after amputation. 

Using  3 H-thymidine, they showed that osteoclasts appearing 

in the limb are formed from precursors circulating in blood. 

 Osteoclast precursors did not proliferate in the regenerating limb. 

Osteoclasts labeled with  3 H-thymidine were detected only when 

 3 H-thymidine was administered to the salamander 1 d before the 

derived from such M-CSF – independent cells in vivo. RANKL 

and M-CSF were required to prepare QuOPs from BMM �  in 

vitro in the absence of osteoblasts. In contrast to the QuOPs 

in vivo, we could not maintain the QuOPs, which were formed in 

BMM �  cultures for  > 3 d with the capability to differentiate into 

osteoclasts in the absence of osteoblasts (unpublished data). 

In addition, our preliminary experiments showed that wild-type 

and RANKL  � / �   osteoblasts failed to maintain QuOPs in an un-

differentiated state for a long period in culture (unpublished 

data). These results suggest that the characteristics of QuOPs 

 Figure 7.    Localization of QuOPs in bone.  
(A) Localization of c-Fms + /RANK +  and Ki67 +  cells. 
Tibiae were recovered from 7-wk-old wild-type 
and 3-wk-old RANKL  � / �   mice. Sections of 
tibiae were prepared and subjected to double 
staining of RANK (green) and c-Fms (red; top 
and middle). Nuclei were labeled with DAPI 
(blue). Top panels show low power views of 
the specimens, and middle and bottom panels 
show high power views. (middle) The asterisk 
indicates a multinucleated osteoclast, which is 
surrounded by a small dotted line, and arrows 
indicate mononuclear cells double positive for 
RANK and c-Fms (yellow). Tibiae were also 
recovered from 7-wk-old wild-type mice pre-
treated with 5-FU for 6 d. (bottom left) Sections 
of tibiae from 5-FU – treated mice were stained 
for RANK (green), c-Fms (red), and DAPI (blue). 
The arrow indicates cells double positive for 
c-Fms and RANK in 5-FU – treated mice. (bottom 
right) Sections of tibiae from RANKL  � / �   mice 
were also stained for RANK (green), Ki67 
(red), and DAPI (blue). The arrow indicates a 
RANK +  and Ki67  �   cell. Bones are indicated 
by dashed lines. (B) Localization of RANK +  
cells and ALP +  cells. Sections of tibiae from 
RANKL  � / �   mice were subjected to staining 
of RANK (green), ALP (red), and DAPI (blue). 
Arrows and arrowheads indicate RANK +  and 
ALP +  cells, respectively. The inset shows a high 
power view of the boxed region.   
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 osteoblastic lineage function as a key component of the HSC 

niche controlling HSC numbers ( Calvi et al., 2003 ;  Zhang et al., 

2003 ). Osteoblasts may be involved in maintaining QuOPs as 

well as HSCs for a long period in a quiescent state. Unlike 

HSCs, QuOPs are cells with transient characteristics but with-

out a self-renewal capacity. The role of osteoblasts in an osteo-

clast niche may be different from that in the HSC niche. Further 

studies will elucidate the molecular mechanisms of the mainte-

nance of QuOPs in osteoclast niches. 

 Materials and methods 
 Animals and diet 
 6-wk-old male ddY mice, 3- and 7-wk-old male C57BL/6 mice, and pregnant 
C57BL/6 mice at E13.5 were obtained from Japan SLC. Cell cultures were 
performed using cells obtained from ddY mice. In vivo experiments were 
performed in C57BL/6 mice. Osteopetrotic (op/op) mice (C57BL/6) 
were obtained from The Jackson Laboratory. RANKL  � / �   mice (C57BL/6) 
were generated in one of the authors ’  laboratories ( Kong et al., 1999 ). In 
some experiments, wild-type mice (C57BL/6), RANKL  � / �   mice, and op/op 
mice received i.p. injections of 2MD, RANKL (PeproTech), and M-CSF 
(Kyowa Hakko), respectively. 2MD was provided by M. Shimizu (Tokyo 
Medical and Dental University, Tokyo, Japan;  Yamamoto et al., 2003 ). 
All experiments were conducted in accordance with the guidelines for stud-
ies with laboratory animals of the Matsumoto Dental University Experimen-
tal Animal Committee. 

 Cultures of BMM �  
 To obtain bone marrow macrophages, bone marrow cells obtained from 
tibiae of 6-wk-old ddY mice were cultured in  � -MEM (Sigma-Aldrich) con-
taining 10% FBS (JRH Biosciences) in the presence of 10 4  U/ml M-CSF. 
 After culture for 16 h, nonadherent cells were harvested, and 1.5  ×  10 5  cells 
were incubated with 10 4  U/ml M-CSF for 2 d in 48-well plates. Old media 
were replaced with fresh media containing M-CSF and further cultured for 
24 h. The adherent cells were used as BMM � . This time point was desig-
nated as day 0 in all the experiments. BMM �  were further cultured with or 
without 100 ng/ml RANKL in the presence of 10 4  U/ml M-CSF for 3 d. 
Some BMM �  cultures were incubated with 100  μ M HU (MP Biomedicals) 
or 10 nM BrdU (Sigma-Aldrich). After being cultured for the specifi c 
periods, cells were fi xed and stained for TRAP ( Takahashi et al., 1988 ). 
The BrdU incorporated into cells was detected by using a BrdU immuno-
histochemistry kit (Exalpha Biologicals). Images were obtained using A-Plan 
10  × /0.25 Ph1 and long-distance A-Plan 40  × /0.50 Ph2 objectives (Carl 
Zeiss, Inc.) on a microscope (Axiovert 200; Carl Zeiss, Inc.) with a digi-
tal camera (AxioCamHRc; Carl Zeiss, Inc.). Images were captured with 

amputation. These results suggest that QuOPs are formed in 

other hemopoietic tissues. 

 In vivo identifi cation of QuOPs 
 Using RANKL  � / �   mice, we could identify QuOPs as c-Fms + /

RANK +  cells. Most of the RANK +  cells were negative for Ki67 

in RANKL  � / �   mice. c-Fms + /RANK +  cells were also detected in 

bone tissues in wild-type mice treated with 5-FU. These results 

confi rmed the notion that QuOPs identifi ed as c-Fms + /RANK +  

cells in vivo are cell cycle – arrested cells. Like RANKL  � / �   mice, 

c-Fos knockout (c-Fos  � / �  ) mice exhibit severe osteopetrosis as 

a result of a lack of osteoclasts ( Wang et al., 1992 ). The distri-

bution of c-Fms + /RANK +  cells was examined in bone tissues 

in c-Fos  � / �   mice (Fig. S5, available at http://www.jcb.org/cgi/

content/full/jcb.200806139/DC1). Consistent with a previous 

study, F4/80 +  cells were detected in proximal tibiae ( Grigoriadis 

et al., 1994 ). c-Fms +  cells were similarly observed along the 

bone surface. However, RANK +  cells were hardly observed in 

bone tissues in c-Fos  � / �   mice (Fig. S5). These results suggest 

that c-Fos signaling is important for the differentiation of hemato-

poietic cells into QuOPs. The abnormal bone resorption was 

observed in some genetically modifi ed mice such as tumor necro-

sis factor- �  transgenic mice ( Yao et al., 2006 ) and osteoprote-

gerin  � / �   mice ( Bucay et al., 1998 ;  Mizuno et al., 1998 ). Analysis 

of QuOPs in those mice may provide variable information on 

the mechanism of osteoclastogenesis. 

 Osteoclast niche prepared by osteoblasts 
 How do QuOPs recognize and settle at sites suitable for osteo-

clastogenesis? In preliminarily experiments, we observed that 

osteoclasts detected in BMP-2 – induced ectopic bones are formed 

from circulating QuOPs (unpublished data). These results sug-

gest that hemopoietic tissues supply QuOPs, which reach the 

site where osteoclasts form through the blood stream. Osteo-

blasts may play a role in the homing of QuOPs to bone tissues. 

These homing and maintenance mechanisms occur in osteoclast 

niches ( Fig. 8 ). Recent studies have shown that cells of the 

 Figure 8.    Schematic representation of osteo-
clast niche.  Osteoclasts differentiate from 
monocyte/macrophage lineage cells through 
two sequential cell cycle – related events. Cell 
cycle – arrested QuOPs are the committed pre-
cursors of osteoclasts. Osteoclast precursors 
proliferate and differentiate into QuOPs in 
hemopoietic tissues. QuOPs reach osteoclast 
niches prepared by osteoblasts. QuOPs dif-
ferentiate into osteoclasts without cell cycle 
progression in response to all the stimuli that 
induce osteoclast formation. Osteoblasts may 
play a pivotal role in maintaining QuOPs for a 
long period in an undifferentiated state.   
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 Flow cytometric analysis 
 Bone marrow cells obtained from femora were layered onto a Lympholyte-M 
gradient (Cedarlane Laboratories Ltd.). After centrifugation, mono nuclear 
cells were collected and stained with anti-RANK (LOB14-8) antibody 
(Genetex, Inc.) and anti – c-Fms antibody. After two washes, cells were incu-
bated with phycoerythrin-conjugated anti – rat IgG and FITC-conjugated 
anti – rabbit IgG (Beckman Coulter). Collected mononuclear cells were 
also fi xed, permeabilized, and incubated with phycoerythrin-conjugated 
anti-CD11b antibody (M1/70; Beckman Coulter) plus FITC-conjugated 
anti – MOMA-2 antibody (Beckman Coulter). Stained cells were analyzed 
by Cytomics FC 500 (Beckman Coulter). Simultaneously, mononuclear cells 
in femurs and tibiae were counted using Flow-Count Fluorospheres (Beck-
man Coulter). 

 Measurements of serum TRAP5b activity and calcium 
 The serum TRAP5b activity was measured using a mouse TRAP assay kit 
(SBA Sciences). Serum calcium concentrations were measured using a cal-
cium E kit (Wako Chemicals USA, Inc.). 

 Isolation of c-Fms + /RANK +  cells and MOMA-2 + /CD11b +  cells 
 Mononuclear cells obtained from femoral bone marrow were magnetically 
labeled with biotinylated anti-RANK antibodies conjugated to microbeads 
using a multiparameter magnetic cell-sorting Antibiotin Multisort kit (Mil-
tenyi Biotec). RANK +  cells were purifi ed using a positive selection column 
and a Multisort release reagent (Miltenyi Biotec). RANK +  cells were subse-
quently labeled with anti – c-Fms antibodies conjugated to microbeads using 
anti – rabbit IgG microbeads (Miltenyi Biotec). c-Fms + /RANK +  cells were 
purifi ed using a positive selection column and a Multisort release reagent. 
MOMA-2 + /CD11b +  cells were similarly purifi ed from femoral bone mar-
row. Isolated c-Fms + /RANK +  and MOMA-2 + /CD11b +  cells were cultured 
for 7 d with 10 4  U/ml M-CSF and 100 ng/ml RANKL with or without 70  μ M 
HU in 96-well plates (1.5  ×  10 4  cells). 

 Statistical analysis 
 StatView software (version 5.0; SAS Institute, Inc.) was used for all statisti-
cal analyses. Data were evaluated by a one-way analysis of variance fol-
lowed by Fisher ’ s protected least signifi cant difference test. The results of all 
experiments were expressed as the mean  ±  SD for 3 – 8 cultures. P  <  0.05 
was considered statistically signifi cant. Each experiment was repeated at 
least three times, and similar results were obtained. 

 Online supplemental material 
 Fig. S1 shows the expression of cell cycle regulatory molecules in BMM �  
and purifi ed osteoclasts. Fig. S2 shows the effects of overexpression of 
cell cycle regulatory molecules in BMM �  on osteoclastogenesis and ef-
fects of overexpression of RANK in osteoblasts on cell proliferation. Fig. S3 
shows the effects of feeding mice a low calcium diet on the incorpora-
tion of BrdU into nuclei of osteoclasts. Fig. S4 shows the character-
ization of c-Fms + /RANK +  cells isolated from mouse bone marrow cells. 
Fig. S5 shows the analysis of QuOPs in c-Fos  � / �   mice. Online supple-
mental material is available at http://www.jcb.org/cgi/content/full/jcb
.200806139/DC1. 
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AxioVision software (Carl Zeiss, Inc.). Cell growth was estimated by the 
cell viability AlamarBlue assay (Invitrogen). 

 Western blot analysis 
 Cells were lysed in 0.1% NP-40 lysis buffer (20 mM Tris, pH 7.5, 50 mM 
 � -glycerophosphate, 150 mM NaCl, 1 mM EDTA, 25 mM NaF, 1 mM 
Na 3 VO 4 , 1 ×  protease inhibitors cocktail [Sigma-Aldrich], 1 ×  phosphatase 
inhibitors cocktail I [Sigma-Aldrich], and phosphatase inhibitors cocktail II 
[Sigma-Aldrich]). Cell lysates were electrophoresed on an SDS-PAGE 
gel, transferred onto a PVDF membrane (clear blot P membrane; ATTO), 
blotted with antibodies to specifi c proteins, and visualized using ECL (GE 
Healthcare). The following antibodies were used for primary antibodies: 
anti – cyclin D1 (72-13G), anti – cyclin D2 (C-17), anti-p27 KIP1  (F-8), and anti-
carbonic anhydrase II (M-14) obtained from Santa Cruz Biotechnology, 
Inc.; anti – cyclin E1 and anti –  � -actin (AC-74) obtained from Sigma-
Aldrich; anti – cyclin D3 (1), anti-Cdk2 (55), and anti-p21 CIP1  (SXM30) 
 obtained from BD; anticathepsin K (182-12G5) obtained from Daiichi 
Fine Chemical; and anti-Cdk4 (DCS-35) and anti-Cdk6 (K6.83) obtained 
from Millipore. 

 Real-time PCR 
 Total RNA was extracted from BMM � . cDNA was synthesized from the 
total RNA using reverse transcription (Rever Tra Ace; Toyobo) and sub-
jected to a two-step PCR in the DNA Engine Opticon system (MJ Japan) 
using the specifi c primers. The fold/change ratios between test and control 
samples were calculated. The sequences of primers for each gene were 
as follows: p21 CIP1 , 5 � -TTGCACTCTGGTGTCTGAGC-3 �  (forward) and 
5 � -TCTGCGCTTGGAGTGATAGA-3 �  (reverse); p27 KIP1 , 5 � -TTGGGTCT-
CAGGCAAACTCT-3 �  (forward) and 5 � -TTACGTCTGGCGTCGAAGG-3 �  
(reverse); and glyceraldehyde-3-phosphate dehydrogenase (G3PDH), 
5 � -ACCACAGTCCATGCCATCAC-3 �  (forward) and 5 � -TCCACCACCCT-
GTTGCTGTA-3 �  (reverse). 

 In vivo labeling of nuclei with BrdU 
 Wild-type mice were given 1 mg/ml BrdU in drinking water. Osteopetrotic 
mice received i.p. injections of BrdU (1 mg/head/day) because they were 
fed a water-containing paste diet. After the administration of BrdU for the 
indicated period, mice were killed, and tibiae were removed and sub-
jected to BrdU staining. Some specimens were double stained for TRAP 
and BrdU. 

 Immunohistochemical analysis 
 Cultured cells were fi xed and incubated with anti-Ki67 antibody (Novo-
castra Laboratories) followed by a rhodamine-conjugated secondary 
anti – rabbit IgG (GE Healthcare). Cells were also stained with DAPI (Vec-
tor Laboratories). Images were obtained using a long-distance A-Plan 40  × /
0.50 Ph2 objective on a microscope (Axiovert 200) with a digital cam-
era (AxioCamHRc). Images were captured with AxioVision software. 
Figure construction of images was performed using the Photoshop soft-
ware (Adobe). 

 The tibial sections were subjected to staining for TRAP and BrdU 
(anti-BrdU antibodies; BD) and counterstaining with hematoxylin. TRAP +  
osteoclasts and BrdU +  and BrdU  �   nuclei in osteoclasts were counted in 
eight images of 0.036 mm 2  (220  ×  164  μ m) located under the growth 
plate (trabecular bone regions). The bone morphometric analysis was 
performed using an analytic software (TRI/3D-BON; Ratoc System En-
gineering Co., Ltd.). For immunofl uorescent staining, tibiae were frozen 
in hexane using a cooling apparatus (PSL-1800; Tokyo Rikakikai Co., Ltd.) 
and embedded in a 5% carboxymethyl cellulose gel. The 5- μ m-thick 
sections of nondecalcifi ed tibiae were prepared using Kawamoto ’ s fi lm 
method (cryofi lm transfer kit; Fintec Co., Ltd.) and fi xed in ice-cold 5% 
acetic acid in ethanol ( Kawamoto and Shimizu, 2000 ). The sections 
were subjected to staining for c-Fms, RANK, ALP, and Ki67 using spe-
cifi c antibodies (biotinylated anti-RANK; R & D Systems), anti – c-Fms (Mil-
lipore), and anti-ALP (generated in one of the authors ’  laboratories;  Oda 
et al., 1999 ). Biotinylated antibodies were visualized with a Tyramide 
Signal Amplifi cation kit for FITC (PerkinElmer). Rhodamine-conjugated 
anti – rabbit IgG was used as the secondary antibody. The sections 
were also subjected to DAPI staining. Images were obtained using 
Plan-Neofl uar 5  × /0.15 and Plan-Neofl uar 40  × /0.75 objectives (Carl 
Zeiss, Inc.) on a microscope (Axioplan 2 imaging; Carl Zeiss, Inc.) with 
a digital camera (AxioCamHRc). Images were captured with AxioVision 
software. Figure construction of images was performed using the Photo-
shop software. 
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