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Abstract. We present the three-dimensional structure 
of an actin filament bundle from the sperm of Limu- 
lus. The bundle is a motile structure which by changing 
its twist, converts from a coiled to an extended form. 
The bundle is Composed of actin plus two auxiliary 
proteins of molecular masses 50 and 60 kD. Fraying 
the bundle with potassium thiocyanate created three 
classes of filaments: actin, actin plus the 60-kD pro- 
tein, and actin plus both the auxiliary proteins. We 
examined these filaments by transmission electron 
microscopy and scanning transmission electron micros- 
copy (STEM). Three-dimensional reconstructions from 
electron micrographs allowed us to visualize the actin 
subunit and the 60- and 50-kD subunits bound to it. 

The actin subunit appears to be bilobed with dimen- 
sions 70 x 40 x 35/~. The inner lobe of the actin 
subunit, located at 20 ]k radius, is a prolate ellipsoid, 
50 x 25/~; the outer actin lobe, at 30/~ radius, is a 
35-A-diam spheroid. Attached to the inner lobe o f  ac- 
tin is the 60-kD protein, an oblate spheroid, 55 x 40 
.~, at 50/~, radius. The armlike 50-kD protein, at 55 
/~, radius, links the 60-kD protein on one of actin's 
twin strands to the outer lobe of the actin subunit on 
the opposite strand. We speculate that the 60-kD pro- 
tein may be a bundling protein and that the 50-kD 
protein may be responsible for the change in twist of 
the filaments which causes extension of the bundle. 

TIN, a protein found in essentially all eukaryotic cells, 
is used by cells for both motility and cytoskeletal 
support. The structure of actin and how it combines 

with auxiliary proteins define the role actin performs in a 
particular structure. One such motile structure is found in the 
sperm of Limulus. It is a bundle of actin filaments cross- 
linked by auxiliary proteins. Initially the bundle is coiled to 
form a compact structure at the posterior end of the sperm 
cell. During fertilization of the egg, the bundle uncoils to 
generate a 60-gm-long acrosomal process (Tilney, 1975). 
The uncoiling is driven by a change in twist of the actin- 
containing filament (DeRosier et al., 1980). The entirely 
different functions and movements which actin filaments per- 
form seem to arise from the particular set of actin binding 
proteins associated with each actin-containing structure 
(compare the role of actin in the extension of the Limulus 
acrosomal process, for example, to interactions between ac- 
tin and myosin in contracting skeletal muscle or cytokinesis). 
To understand better how actin can perform different func- 
tions in different structures, we need to determine the three- 
dimensional structure of F actin as well as actin in combina- 
tion with its auxiliary proteins. Actin filaments, however, are 
disordered, making analysis difficult (Aebi et al., 1986; 
Egelman and DeRosier, 1983). 

Here we report studies of actin-containing filaments which 
we show have little angular disorder, presumably due to the 
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presence of auxiliary proteins. Our analysis of these ordered 
filaments allows us to avoid the difficulties inherent in study- 
ing disordered systems. We obtained three classes of fila- 
ments, denoted 5.9, 4.0, and 1.6. The last is pure actin. 
Negatively stained preparations of the two other classes of 
filaments showed little, if any, of the disorder seen in fila- 
ments of pure F-actin. The high degree of helical order made 
these filaments well-suited for three-dimensional (3D) 1 re- 
construction. SDS-PAGE, mass determination with the scan- 
ning transmission electron microscope (STEM) at Brook- 
haven National Laboratory (Brookhaven, NY) and 3D 
reconstruction techniques demonstrated that the 4.0 illa- 
ments are composed of F-actin complexed with an equimolar 
amount of a 60-kD protein while the 5.9 filaments contain 
actin with equimolar amounts of both the 60- and 50-kD pro- 
teins. These filaments were used to determine the structure 
of actin, the 60-kD protein, and the 50-kD protein, as well 
as to show how these two auxiliary proteins bind to actin and 
how the filaments interact to form a bundle. 

Materials and Methods 

Specimen Preparation 
Bundles in the false discharge state were isolated from Limulus (horseshoe 
crab) sperm as described by Tilney (1975). The isolated false discharges 

1. Abbreviations used in this paper: KSCN, potassium thiocyanate; STEM, 
scanning transmission electron microscopy; 3D, three dimensional. 
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were frayed by treatment with 0.5 M potassium thiocyanate (KSCN) or 
0.8 M potassium iodide (KI) for 0-15 min. The fraying reaction was stopped 
by dilution with 10 mM Tris-HC1, and the extent of the reaction was 
checked by electron microscopy. In some cases the isolated bundles were 
allowed to sit on ice for a few days (2-7 d) during which fraying occurred 
without the need for KSCN or KI. As a control F actin filaments were pre- 
pared as described by Spudich and Watt (1971), and then treated with 1% 
Triton X-100 and 0.5 M KSCN. 

SDS Gel Electrophoresis 
The isolated, intact acrosomal bundles were analyzed by discontinuous 
SDS-PAGE with a 5% stacking gel and a 12% resolving gel (Laemmli, 
1970). Bio-Rad Laboratories (Richmond, CA) low molecular mass stan- 
dards (14.4-92.5 kD) were used to determine approximate molecular 
masses. 

Transmission Electron Microscopy 
The treated false discharge sample was placed on a carbon-coated electron 
microscope grid, washed with 10 mM Tris-HC1 pH 7.5 or 10 mM sodium 
phosphate pH 6.7, and negatively stained with 1 or 2 % uranyl acetate. Elec- 
tron photomicrographs were taken on a Philips EM200, a Philips EM301, 
or a Philips EM420 at 60, 80, or 100 kV, respectively. 

STEM 

Measurements of mass-per-unit length were performed on the STEM at 
Brookhaven National Laboratory using the method of Wall and Hainfeld 
(1986). A drop of 5 mM sodium phosphate (pH 7) was placed on a wet 
carbon-coated (20-/~-thick film) titanium electron microscope grid. The 
treated false discharge sample or similarly treated F-actin sample was in- 
jected into the drop and adsorbed to the carbon film for 1 min. The grids 
were washed with 5 mM sodium phosphate, frozen in nitrogen slush, and 
freeze-dried for 12 h. Grids were transferred to the cold stage without ex- 
posure to the atmosphere via a transfer unit. The values for the mass-per- 
unit length and radial density profiles were determined as in Steven et al. 
(1986, 1984), using tobacco mosaic virus particles as a standard. We 
measured mass per unit length for segments of filaments ~500-1,500 A 
long, and measured the radial density profile for straight segments of fila- 
ments 500-1,000/k long. Data for the profiles were taken from 16 of the 
5.9 filaments, 19 of the 4.0 filaments, and 31 of the actin (or 1.6) filaments. 
The radial density plots were scaled and subtracted to produce radial density 
profiles of the 50-kD protein (the 5.9 profile minus the 4.0 profile) and the 
60-kD protein (4.0 minus 1.6). 

Computer Analysis 
Electron microscope negatives were digitized using an Optronics P-1000 
densitometer with a spot size of 50 p.m and 256 grey levels, yielding a maxi- 
mum resolution of "-,30 ~k. Images were floated on a background value 
which is the average of the perimeter values. The Fourier transforms and 
three-dimensional helical reconstructions were computed as described by 
DeRosier and Moore (1970), but with an array of 512 by 512 points. Extrac- 
tion of amplitudes and phases along the layer line was done by interpolation 
of data in Fourier space where the data were oversampled; interpolation of 
data on the image was not done since that caused a loss of power in the 
higher resolution data. The computations were done on a Digital Equipment 
Corporation VAX 11/780 computer and displayed on the Grinnell GMR-27 
or AED-512 graphics systems. The basic computer programs for the helical 
reconstruction were those developed at the Medical Research Council Lab- 
oratory of Molecular Biology (Cambridge, England) and adapted to our 
VAX. 

Calculating Cumulative Angular Disorder 
To calculate the angular disorder, we determined A~obs, the angle of rota- 
tion per subunit in the helix. A~ob~ = 360°/(2 + a/b), where a and b are 
the axial heights of the first (1/355/~.) and sixth (1/59 ~,) layer lines, respec- 
tively (DeRosier and Censullo, 1981). The uncertainty, di, of A$ob~ for a 
particular filament increases as V~, where N is the number of subunits in 
the ith filament: 

d, = V~'(A~o~, - A ~ ) ,  (I) 

where A~a,g is the overall average of A~,,b, for all filaments measured 

(Egelman and DeRosier, 1982). The angular disorder of all filaments mea- 
sured is then the root mean square (rms) value of di, that is: 

drm~ = ~ ] ~  d~2, (2) 

where n is the number of filaments used for the calculation. 

Calculation of Q and Phase Residuals 
We examined layer lines I = 0, 1, 2, 5, 6, 7 (equator, 1/355, 1/177, 1/71, 1/59, 
1/51/~) with regard to their intensity and radial resolution, and the symmetry 
of the phases about the meridian. 

One criterion for choosing a filament for inclusion in the reconstruction 
was the minimum value of Q, where Q = (~:lbqlA01)/(ZIFI) with IFrs the 
amplitudes and A0's the phases of the layer line data (DeRosier and Moore, 
1970). Minimization of Q corresponds to the displacement of the phase ori- 
gin and the tilt angle of the filament out of the plane of the projection which 
yields data most consistent with helical symmetry. Lower values for Q cor- 
respond to filaments that more nearly possess strict helical symmetry. A sec- 
ond measure of the quality of the data was found in scaling data sets from 
different images prior to averaging. The images were aligned and scaled by 
minimizing the amplitude-weighted phase residual (Amos, 1975): 

, ~ / ~ E " F ~  (3) 
R(A#,Az) = ,  ZIF[ ' 

where A0 = ~ - ~2 - hAS + 2nAzZ. The lower the minimum value of 
R, the better the agreement between data sets. 

Real-Space Residuals 
The 4.0 class filament reconstruction was aligned to the 5.9 class filament 
reconstruction by minimization of a real-space residual as follows: 

R.-S. Residual = E(pl.4.0) 2 - Z Pi,4.0PiA9, (4) 
i i 

where p~ is the density value at the i t" pixel in the asymmetric unit. This 
somewhat unusual form of a residual attempts to fit the actin + 60-kD pro- 
tein portion of the two filaments. The more usual form, E(p~.4~ - p~.5.9) 2 = 
E(pi.4.0) z - 2Epi.4.0Pi,5.9 + Y-(Pi.5.9) 2, will have a constant "background" 
which prevents the minimum from being zero. This background arises in 
the term E(p~.5.9) 2 from those features that are not part of the 4.0 filament 
(that is, from the 50-kD protein). The change in the equation does not shift 
the position of the minimum, but merely modifies its depth. 

Results 

Composition of the Intact Bundle 
We determined the composition of the Limulus acrosomal 
process using SDS-PAGE. As judged by light microscopy, 
preparations of the bundles primarily contained false dis- 
charges, with a small percentage of true discharges. Gels 
of these preparations showed proteins of apparent molec- 
ular masses 97, 59, 53, and 43 kD (Fig. 1). This is in con- 
trast to the apparent molecular masses of 95, 55, and 43 kD 
reported earlier by Tilney (1975) who used a tube-gel system 
without a stacking gel. Using a discontinuous gel system 
(Laemmli, 1970), we resolved the "55 kD" into two proteins 
whose apparent molecular masses were 59 and 53 kD; STEM 
measurements (next section) indicate the presence of sub- 
units having masses of 63 kD and 49 kD, respectively. We 
think the two bands correspond to the two subunits (see Dis- 
cussion). For simplicity of nomenclature we call the two 
auxiliary proteins 60 kD and 50 kD. P. Matsudaira (per- 
sonal communication) prepared samples of isolated false dis- 
charges free of true discharges, and samples of true dis- 
charges free of false discharges. Both had the 43-kD actin 
band. He found, however, a ll0-kD protein (presumably the 
same as our 97-kD band) only in preparations of isolated true 
discharges, and the pair of bands around 55 kD only in 
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Figure 1. SDS-PAGE of actin bun- 
dles from the sperm of Limulus. 
(a) The bundle preparation after 
its isolation but before any fraying 
with a chaotropic agent. The band 
corresponding to actin is marked. 
The two bands with apparent mo- 
lecular masses of'~50 and 60 kD 
are marked "aux". The band at 100 
kD (t.d.) is a contaminant from 
the true discharge form of the 
bundle. (b) Molecular mass stan- 
dards. 

preparations of  false discharges. This 110-kD band may cor- 
respond to a cross-linked dimer of  the 50 and 60 kD proteins. 
The 97-kD component found in our preparations is most 
likely due to the presence of  contaminating true discharges 
and, therefore, the false discharge is composed of  actin (43 
kD) plus two auxiliary proteins (60 and 50 kD). 

Composition o f  Single Filaments 

The isolated false discharges were treated with KSCN, which 
induces bundles to fray into individual filaments (Fig. 2). 
The KSCN-treated preparations contain more than one class 
of  helical filamentsl There are filaments ~150/~, in diameter 
(Fig. 2, arrow), and filaments •100 ~, in diameter (Fig. 2, 
arrowhead). What is needed is to separate the frayed illa- 
ments into classes and to determine the composition of each. 
SDS-PAGE analysis is not useful here, as we have been un- 
able to isolate one type of  filament free of the others. Instead, 
we examined individual filaments using the mass per unit 
length capabilities of the STEM at Brookhaven National 
Laboratory. This solved the problem of heterogeneity in a 
population of  filaments frayed from a bundle because we ex- 
amined individual filaments. Furthermore, the accuracy of  
mass measurement of this technique is at least comparable 
to that of  SDS-PAGE (see Wall and Hainfeld, 1986). 

Figure 2. Electron micrograph of a negatively stained, frayed actin 
bundle. The intact bundle was frayed by brief treatment with KSCN. 
Two classes of filaments can be seen: one having a diameter of 150 
A, (arrow) and the other a diameter of 100 A, (arrowhead). These 
were subsequently identified as a 4.0 filament and F-actin or 1.6 fila- 
ment, respectively (see text). Bar, 2,500/~. 
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Figure 3. Scanning transmission electron micrographs of a freeze- 
dried, frayed actin bundle. (a) Filament with mass/length of 5.9 
kD//~. (b) Filament with mass/length of 4.0 kD/A. (c) Filament 
with mass/length of 1.6 kD//~. (d) Actin filament treated with 
KSCN. Bar, 200/~. 

When we examined the kinds of filaments found in frayed 
bundles we found three classes of filaments (Fig. 3, a-c) with 
the following mass per unit length: 1.6, 4.0, and 5.9 kD//~, 
(Fig. 4). We use these values to name the three classes. The 
composition of these classes of filaments can be deduced by 
converting their mass per unit length into mass per asymmet- 
ric unit by multiplying by the rise per asymmetric unit. To 
obtain the rise per asymmetric unit we measured the lengths 
of crossovers of the helix, known to contain 14 asymmetric 
units (DeRosier et al., 1977). The calculated symmetry 
yields a rise per subunit of 26.4/~. Thus, a mass/length of 
1.6, 4.0, or 5.9 kD//~ correspond to 43, 106, or 156 kD, 
respectively. 

As a control we measured the mass per unit length of 
F-actin isolated and repolymerized from skeletal muscle. It 
was treated with KSCN and Triton X-100 before freeze-dry- 
ing and examination with the STEM (Fig. 3 d). It has a mass 
per unit length of 1.6 kD//~ (Fig. 4 d). This provides an ex- 
cellent control for the frayed Limulus filaments; the 1.6- 
filament is obviously pure actin, as it has an asymmetric unit 
of 43 kD, the expected mass of actin. 

Given, by SDS-PAGE, that the Limulus false discharge 

consists of actin, a 60- and a 50-kD protein, the simplest in- 
terpretation of the three filament types is the following: the 
1.6 filament is pure actin whose subunit mass is 43 kD. The 
4.0-filament which gives an asymmetric weight of 106 kD 
corresponds to an equimolar combination of actin (43 kD) 
and the 60-kD protein. The 5.9 filament gives an asymmetric 
unit mass of 156 kD which corresponds to actin in equi- 
molar combination with both the 60- and the 50-kD 
subunits. Three-dimensional reconstructions of these fila- 
ments (see below) support these assignments. 

Distinguishing Filament 1~¢pes 

The results of the STEM measurements on freeze-dried 
preparations revealed three classes of filaments. The nar- 
rowest of these, having a diameter of ~100 ~, (Fig. 3 c), is 
actin. The other two (5.9 and 4.0) have about the same di- 
ameter, 150/~. In order to proceed with structural analysis 
we needed to distinguish between images of these two kinds 
of filaments in negatively stained preparations. In the images 
of the freeze-dried preparations, the 4.0 filaments were mod- 
ulated strongly from crossover to crossover, being much nar- 
rower at the crossover than halfway between (Fig. 3 b). In 
contrast, the 5.9 filaments (Fig. 3 a) were only slightly mod- 
ulated, having about the same outer diameter as the 4.0 fila- 
ments but a wider crossover. The differences in modulation 
were also seen in images of negatively stained preparations 
(Fig. 5, a and c), allowing us to distinguish between the two 
classes of filaments. 

Analysis of  Cumulative Angular Disorder 

To carry out a three-dimensional reconstruction from images 
of single frayed filaments, we first needed to assess the angu- 
lar disorder in filaments frayed from the Limulus bundle. 45 
frayed Limulus filaments (12 of the 5.9 class and 33 of the 
4.0 class of filaments) were chosen for analysis based on the 
straightness of the filament and on the presence of at least 
the first and sixth layer lines (Fig. 5 shows examples of the 
two classes of filaments and their transforms). 

The distribution of angular positions of subunits was deter- 
mined as outlined in the Materials and Methods. The breadth 
of this distribution provides a measure of the disorder, re- 
flecting the angular variation of the subunit from its ideal he- 
lical position. For pure actin, the value is ,'~12 ° (Stokes and 
DeRosier, 1987; Egelman et al., 1982). We found the angu- 
lar disorder of the Limulus filaments to be '~4 ° and 3 ° for 
the 5.9 and 4.0 filaments, respectively. Stokes and DeRosier 
(1987), using an independent method for determining angu- 
lar disorder, obtained a similar value (2 °) for the 4.0 fila- 
ments. Thus, the amount of disorder is greatly reduced from 
that of pure actin. To assess whether the disorder was negli- 
gible for the purpose of 3D reconstruction, we calculated 
from it coherence lengths, which determine over what length 
the filament may be regarded as helical. If the length re- 
quired for reconstruction is much less than this, the effect of 
angular disorder is essentially negligible. The coherence 
lengths are different for different layer lines used in the re- 
construction (Egelman and DeRosier, 1982). With a disorder 
of 2 ~, the coherence length of the filament is at least 3,700 
subunits for the sixth layer line and at least 233 subunits for 
the second layer line. Values intermediate between these ap- 
ply to the remaining layer lines. This means that for the 
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Figure 4. Histogram of the distribution of filaments according to their mass per unit length. (a) A preparation of filaments at an early 
stage of fraying. This preparation contained a mixture of filaments having mass/length of 4.0 and 5.9 kD/A and of filaments with intermediate 
values. The filaments in this preparation were lying in patches of subunits, indicating their being caught during disassembly. (b) A prepara- 
tion at a later stage than that in a. Images in which the background was free of unbound subunits were selected for measurement in order 
to obtain accurate values. This procedure also tends to eliminate filaments that are in the act of falling aparto(aS seen in a). Three discrete 
peaks, and hence three classes of filaments are seen: one at 1.6 kD/A; one at 4.0 kD//~,; and one at 5.9 kD/A. (c) A preparation at a later 
stage of disassembly. Only the lighter two classes of filaments are seen, corresponding to the peoaks at 1.6 and 4.0 kD/A. (d) A prepara- 
tion of skeletal muscle F-actin treated with Triton X-100 and KSCN. A single peak at 1.6 kD/A is seen. 

length of the filaments we have used, 180 subunits or less, 
the filament may be assumed helical, and the 3D reconstruc- 
tion can be carried out without the need for any correction. 

3D Helical Reconstruction 

Five ldmulus 5.9 filaments and five 4.0 filaments were cho- 
sen for reconstruction based on their Fourier transforms 
(Fig. 5 shows an example of each type of  filament and its cor- 
responding Fourier transform). All these images were from 
negatively stained filaments examined by transmission elec- 
tron microscopy, since freeze-dried STEM images showed 
only the first layer line and were therefore not suitable for 
helical reconstruction. As the first step of  the reconstruction 
process, the helicity of the filaments was checked (as in 
DeRosier and Moore, 1970). The resulting values for the ax- 
ial shift and tilt of the five 5.9 filaments and the five 4.0 fila- 
ments are shown in Table I. Values for Q of  up to 30 ° are 
typical for negatively stained helical particles. 

Next the filaments were aligned and scaled with respect to 

each other so the data could be averaged (Materials and 
Methods, Eq. 3; Amos, 1975). For the 5.9-filament data, this 
procedure was done for near and far side data separately, and 
then another iteration was performed to fit the average near 
and average far side data to each other. For the 4.0 filament 
data, this procedure was done for all data, and another itera- 
tion was performed fitting the data to the first average. The 
35072 ° values we obtained for the minimum rms deviation 
of  the correctly oriented filaments (Table II, second column) 
are typical for negatively stained helical particles; these 
values are always found to be higher than those found in sim- 
ply locating the particle axis (Table I). We calculated three 
reconstructions, one from the average of  the five 5.9 filament 
images, one from the five 4.0 filament images listed in Table 
I, and one from the three "best" 4.0 filament images, listed 
in Table II. These three 4.0 filaments were chosen because 
they had rms deviations of  <50 °. The two reconstructions of 
the 4.0 filaments (5 filaments vs. 3 filaments) did not differ 
significantly, but it seemed that morphological features were 
slightly better defined when only the three best images were 
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Figure 5. Electron micro- 
graphs of the 5.9- and 4.0- 
kD/A filaments and their trans- 
forms. (a) A negatively stained 
5.9-kD/A filament. (b) Trans- 
form of filament in a. (c) A 
negatively stained 4.0-kD//~ 
filament. (d) Transform of 
filament in c. Bar, 1,000/~. 

Table L Minimum Values of Q for Filaments Used in the 
3D Reconstruction 

y-shift 
Filament Tilt angle (pixels) Q-rain 

4.0-a 0 . 0  ° - 1 . 5  7 ° 

4.0-b -2 .5  ° - 1.0 12 ° 
4.0-c -2 .8  ° 0.8 13 ° 
4.0-d 2.0 ° -0 .5  77 ° 
4.0-e 0.0 ° 0.0 22 ° 

5.9-a 1.0 ° - 0 . 4  3 ° 

5.9-b -0 .6  ° 1.2 23 ° 
5.9-c -1 .6  ° -0 .6  5 ° 
5.9-d -0 .4  ° -0 .3  4 ° 
5.9-e 2.0 ° -0 .2  11 o 

Filaments preceded by 4.0- are of the 4.0 class; filaments preceded by 5.9- are 
of the 5.9 class. Shown for each filament are the tilt angle out of the plane of 
the mierograph and the y-shift from the center of the boxed image required to 
minimize Q, and the minimum value of Q. 

used. The averaged Fourier  coefficients, Gn.~(R) and their 
transforms, gn,l(r) (Klug et al . ,  1958), are plotted in Fig. 6. 

To determine the outer boundary of  the reconstructions, 
we set the volume of the reconstruction to the expected vol- 
ume. The expected value for the volume is obtained by divid- 
ing the molecular  mass by 0.81 D / / ~  3. For the 5.9 filament 
Vc~cul~ = 191,000 ~3, and for the 4.0 filament Vc~cuJ,~ = 
131,000 ~3. We contoured the 3D map, and for each con- 
tour determined the volume enclosed in the asymmetric unit. 
We then picked the contour corresponding to the expected 
value (Fig. 7). 

The reliability of  the reconstructions was examined by per- 
forming a Student's t test at the 99 % confidence levels for 
each pixel in the reconstruction (Trachtenberg and DeRosier, 
1987). Fig. 8 shows a section through each of the reconstruc- 
tions together with t test maps. Fig. 9, a and c show surface 
representations of the 3D reconstructions of the 5.9 and 4.0 
filaments, respectively. 
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Table II. Minimum Values of the Amplitude-weighted Phase 
Residuals for Filaments Used in the 3D Reconstructions 

Phase Phase Degrees 
residual residual change 

Filament -up- -down- up/down 

4 . 0 - a  f a r  4 9  ° 77  ° 2 8  

4 . 0 - a  n e a r  38  ° 7 9  ° 41 

4 . 0 - b  f a r  36  ° 71 ° 35 

4 . 0 - b  n e a r  36  ° 72  ° 36  

4 . 0 - c  f a r  4 0  ° 71 ° 31 

4 . 0 - c  n e a r  35 ° 73 ° 38  

5 . 9 - a  f a r  6 0  ° 83 ° 23 

5 . 9 - a  nea r  71 ° 76  ° 5 

5 . 9 - b  f a r  61 ° 75 ° 14 

5 . 9 - b  n e a r  55  ° 77  ° 22  

5 . 9 - c  f a r  4 6  ° 80  ° 3 4  

5 . 9 - c  n e a r  5 0  ° 82 ° 32 

5 . 9 - d  f a r  51 ° 72 ° 21 

5 . 9 - d  nea r  72  ° 82 ° 10 

5 . 9 - e  f a r  61 ° 7 9  ° 18 

5 . 9 - e  n e a r  4 6  ° 84  ° 38  

Filaments preceded by 4.0- are o f  the 4 .0  class; filaments preceded by 5.9- are 
of the 5.9 class. The minimum phase residuals, as computed by Eq. 3, are 
shown for each filament, including the minimum obtained when the filament 
is oriented incorrectly with respect to the average reconstruction for that class; 
that is, with its "barbed" end opposite that of  the barbed end of  the reconstruct- 
ed filament. The "degrees change" between the "up" (correct) and ~down" (in- 
correct) orientations gives an indication of  the polarity of  the filaments and the 
reliability of  the choice of  orientation. 

Polarity of  the 5.9 and 4.0 Filaments 

It is now well known that actin filaments are polar. One way 
of establishing this polarity is to decorate the filaments with 
subfragment 1 (S1) of myosin (Huxley, 1963). Although the 
filaments in the Limulus acrosomal bundle do not decorate 
with S1, presumably because the 60- and 50-kD proteins in- 
hibit binding, the polarity of the filaments in the Limulus 
bundle has been determined by assembling actin subunits on 
the ends of the bundle and then decorating the newly assem- 
bled ends (Tilney et al., 1981). They found that all actin fila- 
ments in the bundle have the same polarity and that the bun- 
dle tapers, with fewer filaments at one end than at the other. 
By simultaneously noting the bundle taper and the arrow- 
heads on the decorated filaments at the ends of the bundle 
they showed that the thin end of the bundle is the "barbed" 
end of an S1 decorated actin filament. It would seem simplest 
to determine the orientation of frayed filaments relative to the 
taper of the bundle. This is not possible, however, because 
the fraying of the bundle, which is necessary to obtain in- 
dividual filaments, obscures the taper. 

To determine its polarity, the reconstruction of the 5.9 fila- 
ments (thought to be the filaments found in the intact Limulus 
bundle; see Discussion), was fit to images of intact bundles 
of known polarity as determined from their taper. To do the 
fitting, layer line data were sampled at row lines and fit to 
row line data from the transforms of four bundles using the 
amplitude-weighted phase residual shown in Eq. 3. A good 
fit was obtained for all four bundles, as shown in Table III. 
In subsequent figures we have placed the barbed end of the 
actin filaments, as determined from our reconstructions, at 
the top of the image. 

Because it lacks the 50-kD subunit, the reconstruction of 
the 4.0 filaments could not be convincingly fit directly to the 
bundle as was done for the 5.9 filaments. To determine the 
orientation of the 4.0 filament in the bundle, we resorted to 
an indirect approach. We took a micrograph containing a 
segment of intact bundle with single 4.0 filaments fraying 
from its end (Fig. 2) and aligned the intact segment of bundle 
with respect to unfrayed bundles of obvious taper and hence 
of known polarity (Eq. 3, with no rotation permitted). This 
alignment procedure determined the polarity of the intact 
segment of the frayed bundle and also the polarity of the fila- 
ments fraying out from it. We then aligned the 3D recon- 
struction relative to the frayed, 4.0 filaments of now known 
orientation. Although the frayed filaments were not the best 
preserved filaments and were not those used in the recon- 
struction, they were good enough to determine the polarity 
of the reconstruction; phase residuals (Eq. 3) for the correct 
and incorrect filament orientations differed by 14°--27 ° . 

As a check on the polarity determinations, we fit the recon- 
struction of the 5.9 filaments to the reconstruction of the 4.0 
filaments, using the real-space residuals and checking both 
the up and the down orientations (for complete discussion 
see Materials and Methods). Because we could correct for 
the absence of the 50-kD subunit, this fitting led to a convinc- 
ing result which agrees with that obtained directly; the real 
space residuals for the correct and incorrect orientations 
differed by 183 %, whereas without the correction the differ- 
ence was only 7 %. All figures have their barbed, or "pre- 
ferred,' end at the top. 

Location of the Auxiliary Proteins on the 
F-Actin Filaments 

The 50-kD Protein. Having aligned the reconstruction of the 
5.9 and 4.0 filaments as described previously, we subtracted 
the two to obtain a map of the 50-kD subunit (Figs. 7 b, 
8, e and f, and 9 b). Before the subtraction the two recon- 
structions were scaled by minimizing the sum of the squared 
differences. The radial density profile (g0.0(r) of the Fourier 
transform) of the 5.9 minus the 4.0 reconstructions (that is, 
the 50-kD subunit) has its center of mass at 57 ,~ (Fig. 
10 d, dashed line). A radial density profile (Stern et al., 
1986) of the 50 kD subunit was also calculated from the 
STEM data by subtracting the radial density profile of the 4.0 
filament from that of the 5.9 filament. The difference, which 
corresponds to the 50-kD subunit, has a peak at 53/~ (Fig. 
10 d, solid line) in agreement with the previous result. Thus, 
results from the two independent methods agree. 

60-kD Protein andActin. We could not determine the po- 
sition of the 60-kD subunit by subtracting an actin recon- 
struction from the reconstruction of the 4.0 filament since, 
due to angular disorder in F-actin, we had no reliable actin 
reconstruction. The reconstruction of the 4.0 filament, how- 
ever, was very similar to the two-sphere model of F-actin pro- 
posed by Egelman and DeRosier (1983) but with a third mor- 
phological feature at larger radius, that is presumably the 
60-kD protein (see arrow, Fig. 7 c). The diameters, more- 
over, were consistent with this interpretation: 91 A for the 
actin "core" and 150/~ for the whole filament. That these fila- 
ments contain an F-actin core is supported by the observation 
that not only do they have the same helical symmetry as ac- 
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Figure 6. Layer line data for the 5.9 (a and b) and 4.0 (c and d) filaments, and for the actin filament derived from them (e and f) .  The 
left column shows the amplitudes of G(n,l)(R) versus R, and the right column shows the amplitudes of g(n,l)(r) versus r. 

tin, but one can polymerize G-actin onto the end of the bun- 
dle (Tiiney et al., 1981). 

Difference profiles agree with this assignment of features 
to proteins: difference radial density profiles between the 4.0 
filament reconstruction and the actin portion of the recon- 
struction of the 4.0 filament (see next paragraph) produced 

a peak at 49 .~, corresponding to the 60-kD subunit (Fig. 10 
e, dashed line). The position of the subunit was then deter- 
mined, independently, from STEM data by subtracting the 
radial density profile of F-actin from the profile of the 4.0 
filament (Fig. 10 e, solid line). The STEM result of 45 ]k 
agrees with that obtained from the reconstruction. 
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Figure 7. Transverse sections of the 5.9, 4.0, and 1.6 filaments, and the 50- and 60-kD subunits. (a) Superposed transverse section of the 
5.9 (solid line) and 4.0 (dashed line) reconstructions. (b) Difference map obtained from the two maps shown in a; map corresponds to 
the 50-kD subunit. (c) Superposed transverse section of the 4.0 reconstruction (solid line) and the actin map (dashed line) derived from 
it. (d) Difference map obtained from the two maps shown in c; map corresponds to the 60-kD subunit. Bar, 50 ]k. 

To produce a map of the 60-kD subunit and of actin alone, 
we computationally removed the outermost morphological 
feature corresponding to the 60-kD protein from the 4.0 fila- 
ment reconstruction. Fig. 7 c shows a cross section of the 4.0 
filament reconstruction; there is a narrow "neck" in the upper 
left of the figure which appears to define the boundary be- 
tween the actin and the outer 60-kD subunit. 

After removing the outer feature, we smoothed the "cut" 
edges of the altered reconstruction by tapering the densities 
along the cut to zero to mimic the falloff at uncut edges of 
the filament. The data were further smoothed by computing 
a Fourier transform of the modified filament, filtering the 
transform by picking off only the data on layer lines 1 = 
0, 1, 2, 5, 6, 7, and then recomputing the map. 

The actin reconstruction so obtained (Figs. 7 c, dashed line, 

and 9 c) has a diameter of 91 .~. The actin subunit appears 
bilobed, with an outer lobe at 30 ]k, and an inner lobe at 20 
/~. These two lobes together form an actin subunit which is 
approximately perpendicular to the filament axis (see Dis- 
cussion). The 60-kD subunit appears as an oblate spheroid 
(Figs. 7 d and 9 d). 

Packing the 5.9 Filaments in a Bundle and Determining 
Interfilament Contacts 

Copies of the 5.9 filament reconstruction were placed on an 
hexagonal lattice to produce a bundle, and projections of the 
bundle were compared with electron micrographs of actual 
bundles (Fig. 11). The filaments in the micrographs of bun- 
dles chosen for comparison are all in register, so the cross- 
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Figure 8. Sections of the 3D maps (left column) and the corresponding t test maps (right column). The left column of panels shows in 
a grey scale representation the density for a section taken perpendicular to the helix axis. Each pixel represents the average of several inde- 
pendent measurements derived from the set of contributing images. Alongside it is a t test map, which assesses the significance of these 
averaged densities. Three levels are displayed: white for densities that are significantly positive at the 99% confidence level, black for those 
significantly negative, and grey for values not significantly different from zero. (a and b) 5.9 filaments. (c and d) 4,0 filaments. (e and 
f )  Difference map of 5.9 and 4.0 filaments and t test map of the difference. Bar, 50/~. 
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Figure 9. Surface views of the filaments and subunits. (a) 5.9 filament. (b) 50-kD subunit. (c) 4.0 filament. (d) 60-kD subunit. (e) Actin 
filament. Bar, 100 A. 

over of one filament is at the same axial position as those of 
its neighbors (Tilney, 1975). The interfilament spacing of fila- 
ments which give the best fit to actual micrographs is 130/~. 

To examine the packing contacts between filaments in a 
bundle we produced bundles from the difference maps show- 
ing just the auxiliary proteins, in addition to a bundle of the 
reconstructed 5.9 filaments. Fig. 12 a shows a two-filament 
bundle of the 5.9 filaments side by side. Fig. 12 b shows a 
two-filament bundle in which only the 60-kD subunit is visi- 
ble. Similarly, Fig. 12 c shows one filament with the 60-kD 

Table IlL Minimum Values of the Amplitude-weighted 
Phase Residuals for Bundles Used to Determine the 
Polarity of the 3D Reconstructions 

Phase Phase Degrees 
residual residual change 

Bundle -up- -down- up/down 

B - l f a r  d =  105 32 ° 58 ° 16 

B - l n e a r  44  ° 56 ° 12 
B-2far  d =  130 35 ° 48 ° 13 

B-2near  23 ° 54 ° 31 

B-3far  d =  130 39 ° 58 ° 19 

B-3near 39 ° 59 ° 20 
B-4far d= 105 38 ° 52 ° 14 
B-4near 31 ° 58 ° 27 

The minimumphase residuals were computed by using Eq. 3 with no rotation 
permitted (A~ = 0). The bundle data were sampled at row lines corresponding 
to d, the interfilarnent spacing, as were the 3D reconstruction data. The mini- 
mum phase residuals are shown for each bundle, including the minimum ob- 
tained when the bundle is oriented incorrectly with respect to the 3D 
reconstruction; that is, with its "barbed" end opposite that of the barbed end 
of the reconstructed filament. The "degrees change" between the "up" (correct) 
and "down" (incorrect) orientations gives an indication of the polarity of the 
filaments and the reliability of the choice of orientation. 

subunit visible and one filament with the 50-kD subunit visi- 
ble, and Fig. 11 d shows a two-filament bundle in which only 
the 50-kD subunit is visible. There appear to be extended 
contacts between the 60-kD proteins of adjacent filaments, 
but there may also be 50-50-kD and/or 50-60-kD protein 
contacts (see Discussion). 

Discuss ion  

Bundle and Filament Composition 

Three classes of filaments (that is, 1,6, 4.0, and 5.9 kD/A) 
are found in preparations of frayed bundles by STEM. The 
STEM measurements together with 3D reconstructions sug- 
gest these classes are actin, actin plus a 60-kD subunit, and 
actin plus a 60-kD subunit and a 50-kD subunit, respec- 
tively. Simulations of the bundle produced from 3D recon- 
struction of the 5.9 filaments reproduce very accurately the 
details seen in electron micrographs of the intact bundle (Fig. 
11). The uniformity of the filaments seen in transverse and 
longitudinal sections of the bundle (see Tilney, 1975) are 
consistent with there being only one type of filament, which 
we therefore suggest is the 5.9 filament. 

SDS-PAGE of the bundle, therefore, should show equimo- 
lar amounts of actin, the 50-, and the 60-kD proteins. There 
are indeed three bands at approximately the correct molecu- 
lar masses. The band at '~60 kD, however, appears consider- 
ably less dense than those of the actin and 50-kD protein. 
The explanation of the weakness of this band is not clear. It 
may be that the bundle contains more than one class of fila- 
ment, although we think this unlikely in view of the results 
from electron microscopy. Alternatively, it may be that the 
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Figure 10. Radial density profiles from STEM (solid lines) and 3D reconstructions of electron micrographs (dashed lines). Relative scaling 
was done by least squares minimization of the differences. Arrows indicate the centers of mass for the auxiliary proteins as located by 
STEM. Arrowheads indicate the centers of mass for the auxiliary proteins as located by 3D reconstruction. (a) 5.9 filaments. (b) 4.0 fila- 
ments. (c) Skeletal muscle F-actin (STEM) and actin portion of the 4.0 filament map. (d) 50-kD subunit (a minus b). (e) 60-kD subunit 
(b minus c). 

60-kD protein is not as intensely stained as the other two or 
it may be that the preparation is contaminated. 

Assignment of Morphological Features to Proteins 
We assigned the outermost, armlike feature of the 5.9 fila- 
ment reconstruction to the 50-kD protein. This assignment 

was made from a straightforward difference map of  the 5.9 
minus the 4.0 reconstructions. From our STEM data, the 
difference in these two filaments is the 50-kD protein present 
on the 5.9 but not the 4.0 filament. We assume that the bind- 
ing of the 50-kD protein produces no significant morphologi- 
cal changes in the actin or 60-kD protein at the resolution 
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Figure 11. Comparison of an electron micrograph of a bundle with 
a simulated bundle. (a) Electron micrograph of a negatively 
stained, intact bundle. (b) Projection of a bundle generated by ar- 
ranging reconstructions of the 5.9 filaments on an hexagonal lattice. 
Bar, 500 A. 

of our data. The appearance of a single, well-defined peak 
in the difference map (Fig. 7 b) reinforces this interpretation. 
The radial density of the difference data, go~(r), locates the 
50-kD protein at 57/~ (Fig. 10 d, dashed line). Consistent 

with the above interpretation is that radial density profiles 
from STEM data of the 5.9 minus the 4.0 filaments locate the 
extra mass (50 kD) at about the same radius, 53/~ (Fig. 10 
d, solid line). Although the peaks of the two difference pro- 
files are at about the same position, the profiles are not iden- 
tical. This is also true for the profiles corresponding to the 
60-kD subunit. Which profile is more faithful is not known. 
On the one hand, equatorial data corresponding to the nega- 
tively stained filaments do not faithfully represent the radial 
density profile of the structure because the shell of negative 
stain is not cylindrically symmetric. On the other hand, the 
freeze-dried preparations of the STEM do not preserve the 
subunit detail and therefore may not preserve the radial den- 
sity profile. 

We assigned the outermost density of the 4.0 filament 
reconstruction to the 60-kD protein. This assignment was 
based on the assumption that the radial position of the outer- 
most density from negatively stained preparations, 49 .~,, is 
too far from the helical axis to be actin. In addition, differ- 
ences between STEM radial density profiles for 4.0 filaments 
minus actin have a peak whose center of mass is at 45 .~,, sup- 
porting this assignment (Fig. 10 e). 

Actin Portion of  the Limulus Filament 

The actin filament, which we carved out of the Limulus 4.0 
reconstruction, has a diameter of 91 /~ (Figs. 7 and 9), in 
agreement with the 90-100 ./~ found by Amos et al. (1982), 
O'Brien et al. (1983), Egelman and DeRosier (1983), and 
others (see reviews by Amos, 1985 and Egelman, 1985). 
This map of actin is strikingly similar in appearance to the 
reconstruction of frozen-hydrated actin filaments done by 
Trinick et al. (1986). 

The actin monomer in our actin map consists of two lobes, 
with the long axis of the monomer (that is, the line between 
the centers of the two lobes) at an angle of ,o90 ° relative to 

Figure 12. Packing contacts in the bundle. (a) Two 5.9 filaments arranged as in a bundle at a separation of 130/~. (b) The same filaments 
but with the actin and 50-kD subunits not shown; the 60-kD subunits are seen. (c) The same filaments but with the left showing only 
the 60-kD subunits and the right showing only the 50-kD subunits. (d) The same filaments but with the actin and 60-kD subunits not 
shown; the 50-kD subunits are seen. Bar, 100 A. 
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the filament axis (Fig. 9 e). The choice of which pair of inner 
lobe and outer lobe constitute a monomer was based on the 
choice made by Egelman and DeRosier (1983). The dimen- 
sions of the actin subunit are ,x,70 x 40 x 35/~, (cf. dimen- 
sions of 67 x 40 x 37 /~ for the Suck et al. [1981] actin 
subunit and 70 x 40 x 38/~ for the Sakabe et al. [1983] 
actin subunit seen in crystals of actin + DNase I). To mea- 
sure the sizes of the two lobes we divided the monomer per- 
pendicular to its long axis at a point where there is an inden- 
tation in its surface. The outer lobe is spheroidal, has a 
diameter of 35/~, and lies with its center at 30 A. The inner 
lobe is a prolate ellipsoid with its long axis nearly parallel 
to the filament axis. This inner lobe has dimensions of 48 
× 25 x 25 /~ and its center at 20/~ from the helix axis 
(Fig. 9 e). 

Connectivity within the actin filament occurs between ac- 
tin monomers along the one-start and the two-start helices. 
The outer lobe of the actin subunit has contacts only to the 
nearest actin monomer along the one-start; this connection 
is between the outer lobe of one actin subunit and the inner 
lobe of the adjacent subunit (Fig. 9 e). The weak connection 
along the two-start is between inner lobes of the actin 
subunits. This weak connectivity along the two-start con- 
trasts with a very strong connectivity in the actin reconstruc- 
tion of Aebi et al. (1986) and with no connectivity in the 
reconstruction of Trinick et al. (1986). The connectivity in 
our map may be real or may be an artifact due to the limited 
axial resolution, to stain withdrawal during exposure to the 
electron beam, or to errors in the excision of the 60-kD 
subunit. 

Shape and Actin-binding Contacts of 
Auxiliary Proteins 
The 60-kD protein is shal~ed like a teardrop, and has dimen- • 
sions of 54 x 54 X 40 A. The 60-kD protein has its most 
extensive contact with the inner lobe of actin, with a smaller 
contact at the outer lobe of the same actin monomer (Figs. 7 
c and 9, d and e). The 50-kD protein is ann shaped, linking 
the protein on one of actin's twin strands to the outer lobe 
of the actin subunit on the opposite strand (see Fig. 9, a and 
b). The 50-kD protein has two portions, one 22 x 50 × 28 
/~ and one 31 x 40 x 34/~ connected by an elbow bend of 
160 ° . 

Packing Contacts in the Limulus Bundle 
In Fig. 12, which shows the 3D reconstruction of two fila- 
ments side by side as in a bundle, the largest areas of  contact 
are seen to be between pairs of  60-kD proteins on adjacent 
filaments, with less extensive contacts between adjacent 60- 
and 50-kD subunits. There are two functional properties of 
the bundle which it is tempting to ascribe to the 50- and 60- 
kD subunits. The first is the crossbridging of filaments and 
the second is the change in twist that drives extension of the 
bundle (DeRosier et al., 1982). 

The interactions of the protein subunits suggest the role of 
each subunit. The 60-kD protein has its main contacts with 
the inner lobe of an actin subunit on one filament and a 60- 
kD subunit on an adjacent filament. Our speculation is that 
this is the bundling protein. The 50-kD protein, however, has 
its main contacts between the outer lobe of an actin subunit 
and the 60-kD subunit on the other strand of the same ilia- 

ments. Thus it spans the two strands of the actin filament. 
Our speculation is that the 50-kD protein plays a role in the 
change of twist of the filaments. 
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